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FOREWORD 

This report was prepared by the Grunrman Aircraft Engineering 

Corporation, Bethpage, New York, under Contract NAS l-5040, en- 

titled, "A Research Study for the Development of a Digital Method 

of Analysis of Supersonic Transport Aircraft Structures in the 

Plastic Range." The work was performed by the Research Department 

of Grumman Aircraft Engineering Corporation, with support from the 

Structural Mechanics Section of Engineering. 

The authors wish to acknowledge the valuable contributions of 

the following individuals: Mr. Paul W. Hornack and Miss Eloise M. 

Turner for digital computer prograrmning, Mr. Francis J. Nolan for 

consultation on computing problems and for preparation of a spe- 

cial eigenvalue subroutine, Dr. Warner Lansing and Mr. Philip W. 

Mason of the Structural Mechanics Section for valuable counsel 

concerning discrete-element methods, Messrs. William R. Jensen, 

William E. Falby, Henry H. Loshigian, and Theodore Balderes of the 

Structural Mechanics Section for conducting analyses which genera- 

ted the linear elastic properties of the sample structures, and, 

in the case of Mr. Balderes, for helpful advice concerning the 

plate buckling problem, Mrs. Ellen Konz for technical aid and 

Q-Wx5, and Miss Catherine O'Regan for 'drafting services. 

The present volume is devoted to a presentation of the methods 

that have been developed and of results obtained in the applica- 

tion of these methods to some sample structures. The digital com- 

puter programs that have been devised for implementation of these 

methods are presented in a separate report, NASA CR- 66364, "Corn- 

puter Programs for the Plastic Analysis of Structures using Discrete- 

Element Methods," by H. Armen, Jr. and A. Pifko. 
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ABSTRACT 

This study deals with the extension of finite-element methods 

to provide analytical means for determining the failure loads of 

aeronautical structures. Two areas are considered as related to 

predicting failure loads, inelastic stress analysis in the presence 

of load cycling and plastic buckling of the bifurcation type. 

Finite element inelastic stress analysis methods are extended 

to take into account the Bauschinger effect for biaxial stress 

states using a plasticity theory based on Ziegler's modification 

to Pragerls kinematic hardening theory. The application of this 

methodology is made to several structures representative of aero- 

nautical construction, including a notched plate, a shear lag 

specimen and a swept wing. Good correlation is obtained between 

analytical and experimental results for the strains at the root of 

the notched plate subjected to load cycling in the plastic range. 

Finite element buckling methods are also extended to consider 

plastic buckling using Stowellls formulation for implementing a 

deformation plasticity theory into the buckling theory. Sample 

calculations are carried out for the plastic buckling of a flat 

plate with various geometries and edge conditions. 
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DISCRETE-ELEMENT METHODS FOR THE 

PLASTIC ANALYSIS OF STRUCTURES 

By G. Isakson, H. Armen, Jr. and A. Pifko 

Grurmnan Research Department 

SUMMARY 

The present report is concerned with the development of 

discrete-element methods for the plastic analysis of complex, 

highly redundant structures, such as aircraft structures. These 

methods fall,into two categories, those applicable to stable 

structures and useful in the prediction of failure associated with 

excessive plastic straining, and those applicable to the determi- 

nation of buckling loads. 

In the development of methods falling into the former cate- 

gory, particular attention is given to the case of intermittently 

applied loads causing successive excursions into the plastic range, 

including reversals of stress into the plastic range. In order 

to accommodate this case and to take the Bauschinger effect into 

account, the plasticity theory selected for use is the kinematic 

hardening theory of Prager. 

The methods in this category are based on the application of 

two matrix relations coming out of a linear elastic analysis of 

the structure and involving the concept of initial strain. Plas- 

tic effects are introduced by interpreting plastic strains as 

initial strains. Solutions are effected by the application of in- 

cremental procedures of two types. In one, which is termed a pre- 

dictor procedure, the initial strains introduced in any step are 

estimated values based on values of plastic strain computed in the 
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preceding step. The other is a stepwise linearization procedure 

in which a linear relationship between plastic strain increments 

and stress increments, coming out of the flow theory used, is 

introduced into the governing matrix relation, which may then be 

solved directly. 

These procedures were programmed for digital computation and 

applied to three different sample structures. These are: 1) a 
plate subjected to concentrated loads applied through tapered 

stiffeners; 2) a notched bar loaded in tension or compression; 

3) a simplified swept wing structure. Cyclic loads were applied 

to all three structures and, in the case of the notched bar, the 

results obtained are compared with available experimental results 

and show good agreement. 

Consideration is given to the problem of failure associated 

with excessive plastic straining. In this connection, criteria 

for plastic collapse are established. These criteria may be ap- 

plied in the course of computations using the procedures discussed 

above, and serve to test whether, at any point in the loading 

process, a collapse state has been reached. 

The problem of plastic buckling is treated as a bifurcation 

phenomenon, with attention concentrated on flat rectangular plates. 

A previously developed discrete-element method for elastic buck- 

ling analysis is extended to take into account the effect of plas- 

tic deformation. It is based on the matrix displacement method of 

structural analysis. A deformation theory of plasticity, used 

previously in a plastic buckling analysis of plates on a continuum 

basis and found to yield results in substantial agreement with 

experiment, is incorporated into the present method. Plate buck- 

ling results are presented for various geometries, edge loadings 

and boundary conditions. 
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A brief review of the literature on temperature effects in 

the plastic behavior of structures is presented. A heuristic 

approach to the introduction of such effects is tentatively pro- 

posed. 

The computer programs developed in the present study are 

presented in a separate report, NASA CR- 66364. 
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1. INTRODUCTION 

The present report is concerned with the development of 

methods for predicting the strength of aircraft structures on a 

more realistic basis than has hitherto been practicable. The 

greater realism is associated with the analysis of the plastic 

behavior of the structure prior to, and accompanying, failure. 

Two main types of failure are considered. One is associated 

with the attainment of a failure state without the necessity of 

significant geometry changes. Failure occurs when the plastic 

strain reaches a level at which the material ruptures or when the 

deformations become excessive from a functional standpoint. It 

may occur as the cumulative effect of several successive loadings, 

possibly involving reversals of stress into the plastic range. 

Prediction of such failure requires a method of analysis capable 

of determining stresses and deformations in a stable highly- 

redundant structure stressed into the plastic range. The method 

should have the capability of taking into account the Bauschinger 

effect, which, in the simple case of uniaxial stress, takes the 

form of a reduction in compressive yield stress due to prior ten- 

sile yielding, and vice versa. 

The other type of failure is characterized by buckling of the 

structure, that is, by instability in which geometry changes play 

an essential role. In the present work, we are primarily con- 

cerned with buckling which occurs at loads that give rise to 

stresses in the plastic range in the prebuckling configuration. 

It has been the purpose of the present study to develop 

methods of analysis appropriate to both types of failure. To per- 

mit the analysis of complex structures of arbitrary shape, these 
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methods have been based on an extension of the discrete-element 

methods of structural analysis to provide the desired capability. 

Inclusion of plastic effects in a discrete-element analysis 

of stable structures has been considered in a number of studies. 

In some, only uniaxial stresses are considered (Refs. l-4). In 

others, specific consideration is given to the presence of multi- 

axial stress (Refs. 5-14), usually on the basis of the L&y-Mises 

criterion for yield and the Prandtl-Reuss flow relations. Such a 

treatment assumes the plastic flow to leave the material isotropic 

and thus precludes inclusion of the Bauschinger effect. 

The mathematical techniques that have been used in the dis- 

crete-element methods .in effecting a solution to the nonlinear 

problem associated with plastic behavior fall into two main cate- 

gories, namely, the incremental and the iterative. In the former 

approach, the loading is applied incrementally and the plastic be- 

havior is introduced in the form of a relation between plastic 

strain increments and stress increments (Refs. 1, 6-13). This 

permits the use of a flow theory of plasticity. 

In the iterative approach, the entire load may be applied at 

once and a solution is effected by application of a Newton-Raphson 

type of iterative technique (Ref. 3). In this procedure, a de- 

formation theory of plasticity must be applied. If the more gen- 

erally applicable flow theory is to be used, the loading must be 

applied incrementally and the iteration carried out within each 

increment. As the computations associated with the iteration are 

formidable, the whole process can become very lengthy. Other pro- 

cedures involving iteration within a basically incremental proce- 

dure are presented in Refs. 10 and 15. 

In most of the work performed up to the present on the devel- 

opment of discrete-element methods of plastic analysis, and in all 
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the references cited above, the assumption of geometric linearity 

is made. That is, it is assumed that changes in geometry can be 

treated as being infinitesimal. A study in which geometric non- 

linearity and inelasticity are considered simultaneously is re- 

ported in Ref. 16. It is concerned specifically with the problem 

of buckling and does not take multiaxial stresses into account. 

The present work is based on the assumption of geometric 

linearity in the plastic analysis of stable structures. The 

methods developed are applicable to complex built-up structures 

subjected to biaxial membrane stress. The extension to triaxial 

stress, while not treated, is straightforward. Attention is con- 

centrated on incremental methods. Application of the developed 

procedures is made to three different sample structures and re- 

sults are presented. Consideration is given to the problem of 

establishing failure criteria, with attention concentrated on the 

phenomenon of plastic collapse. 

The status of the plastic buckling problem is at present some- 

what confused. While the plastic buckling phenomenon is well under- 

stood in the case of columns, the same cannot be said of plates 

and shells. The essential difference is that in the former the 

stresses are uniaxial, whereas in the latter they are biaxial and 

may assume a substantially different distribution among components 

during buckling than exists prior to buckling. This makes an 

analytical solution quite sensitive to the type of plasticity 

theory that is used (Refs. 17 and 18). An additional factor ap- 

pears to be a marked sensitivity of plastic buckling of plates and 

shells to small initial imperfections (Refs. 19 and 20). 

The treatment of buckling by discrete-element methods has un- 

til now been limited to stressing within the elastic range and to 

framed structures or flat plates. While both the matrix force 
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method (Ref. 21) and the matrix displacement method (Refs. 22-24) 

have been applied to this problem, the latter is more appealing 

in that it permits a more direct approach. 

Specific treatment of the buckling problem by this means has 

until now been as a bifurcation phenomenon; that is, the geometry 

of the structure is assumed to remain unaffected by loading prior 

to buckling. The method is, however, basically capable of taking 

geometric nonlinearity into account, and, consequently, treating 

buckling of the "top-of-the-knee" variety. The magnitude of the 

undertaking is then much greater. 

In the present investigation, the displacement method, as 

applied to bifurcation buckling analysis, has been extended to 

treat the problem of plastic buckling. Attention has been concen- 

trated on initially flat rectangular plates with various types of 

loading and boundary conditions. While only simple loading condi- 

tions, giving rise to statically determinate stress distributions, 

have been considered, the method is capable of treating more com- 

plex stress distributions. The stress distribution just prior to 

buckling may be determined by the methods developed for the plas- 

tic analysis of stable structures. The buckling analysis serves 

to determine when these stresses reach a critical state. 



LIST OF SYMBOLS 

a length of plate 

b 

C hardening coefficient 

D 

D' 

e 

e’ 

e. 1 

E 

ES 

Et 

f 

width of plate 

elastic flexural rigidity of plate, Eh3/12(l - v') 

plastic flexural rigidity of plate, Esh3/9 

total strain 

elastic strain 

effective strain 

Young's modulus 

secant modulus 

tangent modulus 

yield or loading function 

g I loading function defined in a subspace of stress space; 

nonisothermal yield or loading function 

h plate thickness 

Mx, M , M Y XY 
plate bending and twisting moments 

n index in Ramberg-Osgood stress-strain relation 

S I average stress in minimum cross section of notched bar; 

initial stress 

T temperature 

W 

x> YI z 

transverse displacement of plate 

coordinates of plate 



a 

a ij 

a ij 

stress parameter, ox/u* 

coordinates of center of loading surface 

coordinates of center of loading surface imme- 
diately prior to unloading 

stress parameter, 'Jy/ a* 

stress parameter, Txy/ a*; shear strain 

nodal generalized displacement 

plastic strain; initial strain 

plasticity reduction factor in plate buckling, 
(5 

Crplastic 'ocr elastic 

dh differential of scalar quantity appearing in 
flow rule, Eq. (A-9) 

h parameter in eigenvalue problem for elastic 
buckling 

5; tracer in eigenvalue problem for plastic buckling 

differential of scalar quantity appearing in 
Ziegler's hardening rule, Eq. (2.10) 

v 

u 

cl. 1 

uO 

Poisson's ratio 

stress; normal stress 

effective stress 

yield stress in tension 

a* nominal stress; maximum stress in triangular 
distribution 

uo.7 

z 

parameter in Ramberg-Osgood stress-strain relation 

shear stress 

Xl' x23 x3 curvature and twist of plate 
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Matrices: 

matrix relating total strains in redundant structure 
to applied load 

matrix relating stresses in redundant structure to 
applied load 

matrix relating plastic strain increments to stress 
increments in individual strain-hardening elements 

diagonally partitioned matrix involving an assemblage 
of [cl matrices for all strain-hardening elements 

matrix relating elastic strains to stresses in 
individual elements 

diagonally partitioned matrix involving an assemblage 
of [El matrices for a group of elements 

matrix expressing condition of tangency of stress 
increment vector to yield or loading surface in an 
individual perfectly plastic element 

diagonally partitioned matrix involving an assemblage 
of [El matrices for all perfectly plastic elements 

matrix expressing condition of normality of plastic 
strain increment vector to yield or loading surface 
in an individual perfectly plastic element 

diagonally partitioned matrix involving an assemblage 
of m matrices for all perfectly plastic elements 

vector of nodal generalized forces 

matrix relating total strain in redundant structure 
to initial stresses 

matrix.relating stresses in redundant structure 
to initial strains 

matrix relating total strains in redundant structure 
to initial strains 
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[ 
1 

KJ 

1 pl 531 
I 1 w 
I "1 

541 

WI 

E 1 
Rl 

r 
1 

R41 

CSI 

I 1 y(2) 

Ly(3) ] 

[ 
zw ] 

[ 1 z(3) 

CA4 

stiffness matrix relating nodal generalized forces 
to nodal generalized displacements 

bending stiffness matrix 

bending stiffness matrix as modified by plastic effects 

initial stress stiffness matrix 

initial stress stiffness matrix corresponding to a 
nominal stress state 

vector of external loads 

matrix relating total strain increments to stress 
increments in an individual strain-hardening element 

diagonally partitioned matrix involving an assemblage 
of [RI matrices for all the strain-hardening elements 

vector of initial stresses 

matrix defined in Eq. (3.41) 

matrix defined in Eq. (3.37') 

matrix defined in Eq. (3.28) 

matrix defined in Eq. (3.25) 

vector defined in Eq. (3.22) 
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Matrix Notation: 

t I column matrix 

[ I 
square or rectangular matrix 

f 
1 
\I diagonal matrix 

1 
Y diagonally partitioned matrix 



2. PLASTICITY RELATIONS 

Because of the complexity associated with plastic deformation, 

the laws governing the behavior of materials in the plastic range 

have not, as yet, reached a level of general acceptance. Thus, 

any attempt to predict analytically the behavior of structures in 

the plastic range must begin with a choice, among the available 

plasticity theories, of one which successfully combines mathemati- 

cal simplicity with a proper representation of experimentally 

observed material behavior. 

In the following, plasticity relations which have been in- 

corporated in the present investigation are presented and briefly 

discussed. A more thorough examination of these relations and a 

review of some of the currently available plasticity theories are 

presented in Appendix A. 

As indicated by Ziegler (Ref. 25), the plastic behavior of a 

material can be described by specifying the following: 

1) An initial yield condition, defining the elastic 

limit of the material 

2) A flow rule, relating the plastic strain incre- 

ments to the stresses and stress increments 

3) A hardening rule, used to establish conditions 

for subsequent yield from a plastic state 

Although the exact nature of the yield surface for structural 

metals has not yet been firmly established, there exists suffi- 

cient experimental evidence to indicate that it is a smooth surface 

(Refs. 26-28). Consequently, the von Mises yield function, which 

describes a smooth surface in stress space and is representable by 

a simple mathematical function, was chosen for use as the initial 
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yield function. With consideration limited to plane stress situa- 

tions (oz = rxz = T 
Y= = w, the von Mises .yield function is 

represented as an ellipsoid in stress space, given by 

f(Uij) = I$ - uxuy + u; + 3T2 - u; = 0 
XY (2.1) 

where u 
0 

is the yield stress in tension. 

In the case of subsequent yielding from a plastic state, the 

function used to define the elastic limit is referred to as the 

subsequent yield function, or the loading function, and can be 

represented as 

f(aij,aij) = 0 

where ~1.. 
iJ 

is a measure of the degree 

(2.2) 

of work hardening. 

The symbolic representation of the loading function given in 

Eq. (2.2) can be used to specify conditions for loading and unload- 

ing from a plastic state. The total differential of f(a..,a..) 
=J iJ 

can be written as 

af df = 5 da.. + aa do.. 
ij =J ij 1J (2.3) 

With f = 0 representing a plastic state and f < 0 representing 

an elastic state, f > 0 not being defined, unloading from a plas- 

tic state to an elastic state will result in df < 0. Since we 

will consider unloading to be elastic, da.. = 0, and the condi- 
1-J 

tion for unloading can be written as 

e da ij ( O 
ij 

(2.4) 
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If 

af doij = 0 aaij (2.5) 

and there is no accompanying plastic deformation, the condition 

given in Eq. (2.5) is termed neutral loading. For an ideally 

plastic material the yield function is a function of stress only. 

Consequently, if there is plastic deformation, any changes in 

stresses during plastic flow must satisfy Eq. (2.5). The geomet- 

ric interpretation of Eq. (2.5) is that the stress increment vector 

is tangential to the loading surface; thus Eq. (2.5) will be re- 

ferred to as the tangency condition associated with ideal, or 

perfect, plasticity. 

When 

$- da ij > O 
ij 

(2.6) 

there will necessarily be plastic deformation, indicating loading 

from one plastic state to another. This condition is termed con- 

sistent loading by Prager. 

The yield and loading conditions serve to establish criteria 

for yielding from some elastic or plastic states, respectively. 

Additional information, in the form of a constitutive relation 

between increments of plastic strain, stress and stress increments, 

is required to describe the plastic behavior of a material. This 

constitutive relation, termed the flow rule, is based on Drucker's 

postulate for work-hardening materials. A discussion of this 

postulate and conditions necessary for its satisfaction is presented 

in Appendix A. The flow rule is represented as 

12 



ds.. = dh 
af(oi.,oi.) 

=J 
ho3 

ij 
(2.7) 

where de.. is the increment of plastic strain, and dh is a 
=J 

positive scalar quantity. 

Having,chosen a yield condition and flow rule, we are now 

left with consideration of a choice of a hardening rule to com- 

plete the description of the plastic -behavior of a material. The 

choice of a specific hardening rule, among those currently avail- 

able for our present purpose, depends upon its satisfaction of 

certain requirements, namely, its ability to describe cyclic plas- 

tic behavior. A discussion of these requirements, together with 

an appraisal of some of the hardening rules, is presented in 

Appendix A. This appraisal has indicated that the kinematic 

hardening theory due to Prager (Refs. 29 and 30) is the most ap- 

plicable. The hardening behavior postulated in this theory 

assumes that, during plastic deformation, the loading surface, 

which is the geometrical representation of the loading function 

in stress space, translates as a rigid body, maintaining the size, 

shape and orientation of the yield surface. 

Denoting the translation of the center of the yield surface 

by 01. lj ' the loading function, f ("ij,uij) J may be represented 

as 

f(Uij - a..) = 0 
1J (2.8) 

so that the von Mises yield condition for plane stress, Eq. (2.1), 

can be written as follows, to represent the subsequent yield con- 

dition, 

f(u..,a..) = (a 
=J =J X - ax)2 - (a X - ux)(u 

Y 
-ay) + (a 

Y 
- ay)2 

(2.9) 
+ 3(7 - et 

xy XY 
)Z - u: = 0 
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Kinemat.ic hardening, as set forth by Prager, predicts that 

the increment of translation of the loading surface in the full 

nine-dimensional stress space occurs in the direction of the ex- 

terior normal.to the surface at the instantaneous stress state. 

However, inconsistencies have been shown to arise when it is 

applied to various subspaces of stress, that is, when the symmetry 

of the stress tensor or the absence of some stress components is 

taken into account. These inconsistencies are discussed in more 

detail in Appendix A. 

In order to avoid the difficulty associated with the imple- 

mentation of Pragerls hardening rule, Ziegler (Ref. 25) has pro- 

posed a modification which assumes that the increment of transla- 

tion of the loading surface is directed along the radius vector 

connecting the center of the loading surface to the instantaneous 

stress state. In this modification, the increment of translation 

is expressed as 

da.. 
iJ 

= dCL(Uij - clij) 

where dy, a positive scalar, is defined in Eq. (A-7) of 

Appendix A. 

An expression for the scalar factor, dh, associated with 

the flow rule, Eq. (2.7), is given in Eq. (A-9), and rewritten 

here as follows, 

dh = $ 
af da 
aUij ij 

af af 

(2.10) 

(A- 9) 

where c is a parameter characterizing the hardening behavior 

of the material. A procedure used to determine this parameter is 

discussed in Appendix A. 
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Substituting the expression for dh given in Eq. (A-9) into 

the flow rule, Eq. (2.7), yields the following equation 

de.. 1 af 
rJ =x7. 

13 

which represents the incremental constitutive 

present investigation. 

(2.11) 

relation used in the 

Greater realism may be achieved in the description of the 

plastic behavior of some materials by assuming that strain harden- 

ing occurs only up to some finite limit of strain, and that the 

behavior beyond this limit is perfectly plastic. Such behavior 

may be termed "limited strain hardening." A detailed treatment 

of the mathematical representation of this type of behavior is 

presented in Appendix B. 
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3. DISCRETE-ELEMENT METHODS OF PLASTIC ANALYSIS 

OF STABLE STRUCTURES 

The elastic analysis of complex, redundant structures neces- 

sarily involves a determination of the stiffness properties of the 

structure. The specific form of representation of these proper- 

ties varies with the method of analysis chosen for use. In the 

discrete-element methods, influence coefficients relating applied 

forces to displacements in the structure, or expressing the in- 

verse relationship, are derived. These influence coefficients are 

determined either by the "force" method or by the "displacement" 

method. In the former, a matrix of influence coefficients repre- 

senting the flexibility of the structure is determined; in the 

latter, the influence coefficients represent the stiffness of the 

structure. The stiffness or flexibility matrices can be used to 

obtain a matrix of influence coefficients relating stresses or 

strains within the discrete elements of the structure to the ex- 

ternally applied loads. 

As a consequence of the general acceptance of the discrete- 

element methods, there has been a continuous refinement of these 

methods to provide a more accurate representation of the elastic 

behavior of complex structures subjected to general loading condi- 

tions. As discussed in the Introduction, there have been concur- 

rent efforts to extend these methods to include the effects of 

piastic deformation. 

The introduction of plasticity within the framework of the 

methods developed for elastic analysis adds considerable complex- 

ity to the implementation of these methods. This added complexity 

is associated with the fact that the stiffness, or flexibility, of 

the structure varies with continued plastic flow. 
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The modifications of the elastic procedures can be carried 

out by either of two general approaches associated with incre- 

mental methods of solution. In the first approach, suggested in 

Refs. 1, 2 and 13, the effects of plasticity are introduced into 

the procedure used to determine the basic stiffness properties of 

the structure. That is, the influence coefficient matrices are 

recomputed in each increment of external load. This type of ap- 

proach constitutes an "internal" modification of the stiffness 

properties of the structure. This distinguishes it from the 

second approach, suggested and applied in Refs. 4, 6, 9 and 12, 

which involves what may be termed the "external" modification 

technique. In this approach, the effects of plasticity are intro- 

duced without the necessity of modifying the influence coefficient 

matrices associated with the linear elastic properties of the 

structure during the course of plastic deformation. This advan- 

tage makes the external modification technique an appealing one, 

and it was consequently chosen for use in the development of 

discrete-element plastic analysis methods in the present investi- 

gation. 

Basically, the external modification of the stiffness proper- 

ties of the structure is effected by introducing initial strains 

or initial stresses into the linear matrix equation governing the 

behavior of the elastic structure. Initial strains are those 

strains which may exist in the elements if they are unloaded and 

imagined to be unconstrained by adjoining elements; initial 

stresses are those stresses necessary to eliminate the initial 

strains. In its present state of development, this approach is 

l.imited in application to loading conditions which cause only 

membrane stresses. 
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Most incremental inelastic analyses implementing the concept 

of initial strain have used estimated values of initial strain 

increments based on values of the plastic strain increments compu- 

ted in the preceding loading step. Such a procedure may be termed 

a predictor procedure. As an alternative, a procedure which di- 

rectly incorporates the linear incremental plastic strain-stress 

relation, Eq. (2.11), into the governing equations, can be set 

UP* This second procedure, termed the stepwise linearization pro- 

cedure, thus avoids the necessity of introducing estimated values 

of initial strain. 

In the present investigation, attention is concentrated on 

two related methods of solution which can implement either the 

predictor procedure or the stepwise linearization procedure in 

effecting a solution to the plasticity problem. In the first 

method, referred to as the stress method, the governing linear 

matrix equation is written for the stresses in the elements, as 

follows, 

Cd = [BItPI + [Hltd (3.1) 

where 

u. = element stresses 1 

'i = external loads 

sk = initial strains 

B .th 
ij = 1 element stress in redundant structure due 

to jth applied load 

H ik 
e ith element stress in redundant structure caused 

by unit initial strain in the kth element. 
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In the second method, referred to as the strain method, the 

linear matrix equation for the idealized structure is written for 

the total strains in the elements, 

Eel = CAICPI + [G](S) (3.2) 

where 

e. 1 = total strains in elements 

'k = initial stresses 

A 
ij 

x ith element strain in redundant structure due 
to jth applied load 

G .th 
ik = ' element strain in redundant structure caused 

by unit initial stress in the kth element. 

From the definition of initial stress, the relation between 

initial stress and initial strain can be written as, 

- rE*]-' (s] (3.3) 

where 1-l 
E4l 

is a diagonally partitioned matrix whose sub- 

matrices contain the elastic coefficients associated with Hookels 

law as applied to a plane stress situation. The elements of a sub- 

matrix of 
r 

l-1 
E41 

are given in Eq. (C-lb) of Appendix C. 

If we define 

[J]= - [G IrEA-" 

Eq. (3.2) can be.written in the following form, 

(3 -4) 

Cd = CA103 + [Jltd (3.5) 



It should be noted that Eqs. (3 .l) and (3.5) are related. 

Relationships between the influence coefficient matrices LB.1 and 

[Al and between [H] and [J] are given in Eqs. (D-5) and (D-11), 

Appendix D, and involve only the elastic properties of the struc- 

ture. Consequently, Eqs. (3.1) and (3.5) are not uniquely identi- 

fied with the matrix force and the matrix displacement method, re- 

spectively, since either one of these equations can be derived 

from the other. 

By interpreting plastic strains as initial strains, Eqs. (3.1) 

and (3.5) can be applied to the plasticity problem, the material 

nonlinearity being introduced through the incremental constitutive 

relations from the plasticity theory. The introduction of this 

device into the discrete-element methods for the treatment of plas- 

tic behavior is generally credited to Padlog, Huff, and Holloway 

(Ref. 6), and concurrently to Argyris (Ref. 4). 

The procedures used in effecting a solution are based on an 

incremental application of the loading. This is consistent with 

the kinematic hardening theory, which is an incremental theory of 

plasticity. Equations (3.1) and (3.5) are thus written in the 

form, 

(Ad = [BICAPI + [HICA~ (3.1') 

(Ae) = CAICA~I + CJI~AE:) (3.5’) 

respectively. 

For the sake of generality, the plastic behavior is assumed 

to be limited strain hardening, as described in Section 2 and 

Appendix B. Unlimited strain hardening and perfect plasticity may 

then be treated as special cases of this type of behavior. 
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If we distinguish, by means 'of the following superscripts, 

the possible stress conditions existing within an element, 

superscript (1) - elastic 

superscript (2) - strain hardening 

superscript (3) - perfectly plastic 

the matrices in Eqs. (3.1') and (3.51) can be partitioned on this 

basis and the equations written, respectively, as follows, 

---- - --- 

and 

' hll! 
-e-m 

H21 
I 

--- k- 

H31 i 

(3.6) 

(3.7) 

If the structure is originally free of any initial strains, 

that is, thermal strains or strains caused by lack of fit, there 

will be no initial strains in those elements which remain elastic 

during the loading process. Therefore, in Eqs. (3.6) and (3.7) we 

can set 

+x(l) I = 0 (3.8) 
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Equation (3.6) can be expanded and written as three matrix 

equations, each associated with a particular stress condition, as 

follows, 

@) 
1 + [ H13 ] +E(~)) (3.9a) 

+ [ H23 ] k~(~)) (3.9b) 

&J(,(3) (2) 
I 

+ I 1 I 
1 H33 J IA’ 

(3) (3.9c) 

Similarly, Eq. (3.7) can be expanded and written as 

sAe(l) 
1 

= 1 1 Al ] k] + [ J12 ] ME) + [ J13 ] be'"')- (3.10a) 

(2) + c 1 s 
1 '23 J IA” 

(3) (3.10b) 

=[A 1 lap (2) 
1311 

1 s 
'33 J 1” 

(3) (3.1Oc) 

The implemntation of the plasticity relations and solution 

of the plasticity problem may now be carried out using either 

Eqs. (3.9) or Eqs. (3.10), the former constituting the stress 

method and the latter the strain method. Although Eqs. (3.9) and 

(3.10) are interrelated sets of matrix equations, sufficient dif- 

ferences arise in carrying out the required solution to warrant 

separate treatment. However, prior to consideration of the solu- 

t,ion of these equations, some basic matrix relations common to both 

methods of solution will be presented. These matrix relations are 

derived for those elements that are plastic, strain-hardening or 

perfectly plastic. 
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For plastic, strain-hardening materials, the differential 

plastic strain-stress relation is given in tensor notation in 

Eq. (2.11). This equation is expanded into a set of equations 

for the various.components of plastic strain in Eqs. (C-2) of 

Appendix C. If tie represent de.. 
=J 

as As.., 
=J 

and da.. as Aa.., 
1J =J 

Eqs. (C-2) can be written in matrix form to represent the incre- 

mental plastic strain-stress relations for the plastic strain- 

hardening elements; 

(3.11) 

The construction of the -submatrices of the diagonally partitioned 
Pfl matrix lC4 is shown in Eq. (C-3) of Appendix C. 

In the plastically deforming elements, the increments of total 

strain can be decomposed into elastic and plastic parts 

(3.12) 

where (Ae') is the elastic part of the strain increment and is 

related to the stress increment through Hooke's law, 

(3.13) 

Substituting Eqs. (3.11) and (3.13) into Eq. (3.12) results 

in the following incremental total strain-stress relation for 

strain-hardening elements, 

(3.14) 
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where 

(3.15) 

The elements of a submatrix of 
r 

1 
R4l are given in Eq. (C-4) of 

Appendix C. 

Because of the normality condition imposed upon the plastic 

strain increment vector, there is no unique stress increment vec- 

tor corresponding to a given plastic strain increment vector. 

Consequently, the matrix bc 1 does not possess an inverse. 

However, the matrix 
r 

l1 4 
R4l, 

relating the incremental total strain 

to the stress increment, is a nonsingular matrix. Thus, we can 

write the inverse relationship, 

(3.16) 

An incremental relation between plastic strain and total 

strain can be obtained by substituting Eq. (3.16) into Eq. (3.11), 

kc (2) I r = 1 J 
9 IA" 

(2) 
I r 

= 1P 1-l J 
C41 R41 lAe 

(2) 
I 

(3.17) 

Consideration is now given to those elements which are in a 

state of perfect plasticity. As stated in Section 2, the conditions 

that must be satisfied for perfectly plastic behavior are: 

1) The stress increment vector must be tangential 

to the loading surface during continued plastic 

deformation, and 

2) The strain increment vector must remain normal 

to the loading surface. 
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Condition 1) is expressed analytically in Eq. .(2.5), and is 

presented for the von Mises yield condition in Eq. (C-5) of 

Appendix.C. If we again represent da.. as Aa. 
1J lj' the implicit 

differential of Eq. (C-5) provides a linear relation among the 

components of stress increment in a perfectly.plastic element. 

This linear dependence can be represented in matrix form for the 

jth perfectly plastic element as follows, 

(3.18) 

If we choose to express ACT in terms of Aa the 

elements of the matrix PX1 
and AZ 

Y XY’ 
1 E4 

are those given in Eq. (c-6). It 

is seen from this equation that the first column of 
r 

EJ is 

zero. For the whole set of perfectly plastic elements we may 

write the matrix relation, 

(3.19) 

Since the submatrices of the diagonally partitioned matrix con- 

tain only zeros in their first column, every third column of the 

diagonally partitioned matrix will be zero. 

The second condition that mst be satisfied in the case of 

perfectly plastic behavior is the flow law, given in Eq. (2.7) and 

rewritten here, 

de.. = af_ dh 
1J 80.. 

iJ 
(3.20) 

Using the von Mises yield condition, we can write the above 

equation as Eq. (C-7) of Appendix C. If we again replace dcij 

by A'ij, Eq. (C-7) provides a linear relation between the com- 

ponents of plastic strain increment in a.perfectly plastic element. 
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Paralleling the development of Eq. (3.19), we can express Eq. (C-7) 

in matrix form, for all perfectly plastic elements as 

(3.21) 

if As and Ay are expressed in terms of AE~, the elements 
Y XY 

of a submatrix of 
P 

q are given by Eq. (C-8). From this equa- 

tion it is seen that the first column of these submatrices is the 

only nonzero column. Thus, only every third column of the diago- 

nally partitioned matrix 
P 

q will be nonzero. 

Equations (3.19) and (3.21) are the matrix representations of 

the two conditions which must be satisfied in the case of perfect 

plasticity. These matrix equations indicate that, in a perfectly 

plastic element, only two of the three components of stress incre- 

ment, and only one of the three components of strain increment, 

are required to specify all the components of the increments of 

stress and plastic strain in that element. Therefore, for the jth 

perfectly plastic element, we can introduce the vector, 

(3.22) 

which, together with Eqs. (3.19) and (3.21), can be used to specify 

the increments of stress and plastic strain in that element. In 

fact, it is easily seen that,because of the special properties of 

r 
i&j and 

P 
Eqs. (3.19) and (3.21) can be written in the 

form, 
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and 

(3.19') 

(3.21') 

respectively. 

Equations (3.11), (3.17), (3.19'), and (3.21') will now be im- 

plemented in developing solutions to Eqs. (3.9) and (3.10). Con- 

sideration will first be given to the solution of the stress in- 

crement equation. 

Stress Method 

Substitution of Eqs. (3.19') and (3.21') into Eq. (3.9c) re- 

sults in the following equation, 

YE/l +, = LB] kp] + [ H32 ] (ne'2'l + [ H33 ]rgxf +,uJ} (3.23) 

or 

[ d3) ] +'] = [ B3 ] kP> + [ H32 ] (he(2)) 

where 

[ 
z(3) 1 P-1 1 1P" 1 

J = 1 E4 - 1 H33 11 E4 

(3.24) 

(3.25) 

A solution may now be effected by either the predictor pro- 

cedure or the stepwise linearization procedure. 
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Predictor procedure. - 

In this procedure, the load is applied in small increments 

and, at the end of each loading step, values for the plastic strain 

increment, AE (2) , equal to those determined in the preceding 

step are introduced into Eq. (3.24). Thus, Eq. (3.24) becomes 

(3.24') 

where the superscripts W and (k-l) refer to values computed 

at the kth and (k-l)th load levels, respectively. 

As a consequence of using estimated values of 

Eq. (3.241), the only remaining unknowns in this equation are the 

elements of the solution vector, Thus, we can write 

04 = [ zc3) 1-l 1 B 1 SAP 
1311 

+ 1 H 1 jAE(2) 
1321’1 

(3.26) 

The order of the matrix, zC3) 1, is equal to the number of 

strain component increments to be solved for in all the perfectly 

plastic elements. 

Equations (3.9a) and (3.9b) can now be used to solve for the 

stress increments in the elastic elements and the plastic strain- 

hardening elements, (a~(~)] and k;i@/], respectively. The 

solution is carried out by using Ae 
I ’ 

determined from 

Eq. (3.21), and again using values for the plastic strain incre- 

ment, 9 determined in the preceding step. 

Substitution of &$2) lck) into Eq. (3.11) yields a solu- 

tion for (k) ' ' J which can be used as an estimate of @) 
1 

in the next loading step. 
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When the material has unlimited strain-hardening properties, 

Eq. (3.9c) is not present, and the intermediate steps involved in 

the solution for 
11 
JAm ck) can be omitted. 

The predictor procedure has been used, in various forms, in 

Refs. 4, 6, 9, and 12 and has been referred to in Ref. 6 as a 

"constant stress" procedure. It has been shown in Refs. 9 and 12 

that this procedure leads to a characteristic numerical instability 

when the material is assumed to have unlimited strain-hardening 

properties. This instability has been eliminated in the present 

investigation by the introduction of limited strain-hardening. 

This is possible because the instability occurs only when the slope 

of the stress-strain curve falls below a critical level. In the 

present procedure, the flatter portion of the stress-strain curve 

is replaced by perfectly plastic behavior, which is treated dif- 

ferently in the analysis. 

Stepwise linearization procedure. - 

This alternative procedure, which does not require the use of 

estimated values of plastic strain increments in the strain- 

hardening elements, but does involve the solution of a linearized 

problem within each loading step, will now be outlined. 

Substitution of Eqs. (3.11) and (3.21') into Eq. (3.9b) re- 

sults in, 

(ao(2)) = [ B2 ] kP} + [ H22 ]rCJ (a~(~))-+ [ R23 ]rzJk} (3.27) 

If we define 

[2(2)1 = b,l,1 1 1 
J 1 J 1 H22 J ‘4 r (3.28) 

where r \3 I is.the unit matrix, Eq. (3.27) can be written as, 
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[z(2)]-+u(2'} = f B2 ] +P} + [ H23 ]r%d +} 

Using Eq. (3.11) to substitute for s& c2) 
'1 1 

in Eq. 

we obtain the following equation, 

zc3)] =+'+ = [ B3 ] {API + [ H32 ]pc: +o(~)) 

(3.29) 

(3.24)s 

(3.30) 

The unknowns in Eqs. (3.29) and (3.30) are the vectors b'd 

and and a sirmltaneous solution of these equations may 

be ef In this process it is convenient to introduce the 

notation, 

[zw = _ 
J- I 

ll'r" 1 
H23 Jl E4 

and 

I 1 2(3) ='I 1P 1 
1 H32 J 1 'Ai 

(3.31a) 

Equations (3.29) and (3.30) are now combined and written in par- 

titioned form as follows, 

(3.31b) 

(3.32) 

It should be noted that the order of the coefficient matrix of 

Eq. (3.32) is equal to the total number of stress component in- 

crements in all the plastically deforming elements. 
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After solution of Eq. (3..32), Eqs. (3.19), (3.21), (3.11) and 

(3.9a) may be used to determine the stress and plastic strain in- 

crements in the entire structure. 

If the material possesses unlimited strain-hardening proper- 

ties, Eq. (3.32) becomes 

If, on the other hand, the material is elastic, perfectly plas- 

tic, Eq. (3.32) becomes 

(3.33) 

(3.34) 

The magnitude of the load increment can be varied during the 

course of loading when either of the procedures discussed above is 

used. When the predictor procedure is used, the estimated value 

of the initial strain increment must be multiplied by the ratio of 

load increment used in the current step to that used in the pre- 

ceding step. No modifications are needed when the stepwise linear- 

ization procedure is implemented. 

Consideration will now be given to the solution of the matrix 

equation for the increments of total strain, Eq. (3.10). 

Strain Method 

The total strain increment, [Ae}, can be decomposed into 

elastic and plastic parts, as shown in Eq. (3.12), 

(3.12) 
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Substitution of Eq. (3.12) into Eq. (3.10~) results in the 

following equation, 

1J 
‘32 jlA’ (2) 

The elastic components of strain increment, Ae' ij' are re- 

lated to the stress increment through Hooke's law, 

Substituting Eq. (3.13) into Eq. (3.35), and making use of 

Eqs. (3.19') and (3.21'), we obtain 

+ 
[ J33 

or 

where 

[y’3’] +} = [ A3 ] +F') + [ J32 ] kEc2)} 

t 
yc3)] = rE$iA + rI,-j - [ J33 

(3.13) 

(3.36) 

(3.37) 

(3.38) 

The solution to the total strain increment equations can be 

realized by either the predictor procedure or the stepwise linear- 

ization procedure. These procedures parallel those presented in 

connection with the stress method. 
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Predictor procedure. - 

Estimates of plastic strain in the strain-hardening elements 

are used to obtain a solution for CA4 in Eq. (3.37). The esti- 

mated values of J&(21 
1 I 

will again correspond to those computed 

in the preceding load step. Thus, we can write Eq. (3.37) as 

[y’3’] +)‘” = [ A3 ] +P] + [ J32 ] ~E(2){(k-1) (3.37') 

where the superscripts u-4 and (k-l) have the same meaning as 

in Eq. (3.24'). 

As a consequence of using estimated values of fd2) 
I 

in 

Eq. (3.37'), the only remaining unknowns in this equation are the 

elements of the solution vector, 
{Am) l Thus, we can write 

[ A3 ] kP-j + f J32 ] +x(~) (3.39) 

\ 
ty(3) ] 

I 
The order of the matrix, , is equal to the number of strain 

component increments in all the perfectly plastic elements. 

Equations (3.10a) and (3.10b) can now be used to solve for 

the increments of total strain in the elastic elements and the 

plastic strain-hardening elements, and lAe(2) 
1 ' re- 

The solution is carried using the values of 

determined from Eqs. (3.39) and (3.211), and again using 

values for the plastic strain increments, computed in 

the preceding step. 

Substitution of JAe (2)}‘k) 

' 
into Eq. (3.17) yields a solu- 

tion for 3 which can then be used as an estimate of 

in the next loading step. 
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A form of the predictor procedure associated with the strain 

method has been used in Ref. 6, and also in Refs. 9 and 12, where 

it is referred to as a "constant strain" procedure. 

Stepwise linearization procedure. - 

Using Eq. (3.191), and substituting the expression for 

{A,(2) ] in Eq. (3.17) into Eq. (3.10b), we obtain the following 

equation, 

If we define, 

[y(2) 1 , c C‘I: - [ J22 ]p#R: 
-1 

Eq. (3.40) can be written as, 

yc2) 1 JAec2) 
11 ) [ '23 ]c*'d +a} + 

(3.41) 

(3.42) 

Using the incremental relation between plastic strain and 

total strain given in Eq. (3.17), we can write Eq. (3.37) in the 

form, 

[Yc3'] +u} = [ A3 ] kPl+ [ J32 ]rCdrRd-' ke(2)) (3.43) 

We can now combine Eqs. (3.42) and (3.43) into the single 

matrix equation, 

(3.44) 
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where 

and 

[y'3'] = - [ J32 ]rCArRd-" 

(3.45) 

(3.46) 

The order of the coefficient matrix of Eq. (3.44) is equal 

to the total number of strain components in all the plastically 

of Eq . (3.44) yields the vectors 

which may then be used in conjunction with 

(3.14), (3.17) and (3.10a) to determine 

the stress and strain increments in the entire structure. 

In the case of unlimited strain-hardening, Eq. (3.44) becomes 

t 
In the case of elastic , perfectly plastic behavior, Eq. (3.44) 

becomes 

(3.47) 

(3.48) 
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4. APPLICATION OF PLASTIC ANALYSIS METHODS 

FOR STABLE STRUCXJRES 

Computer programs implementing the methods and procedures dis- 

cussed in Section 3 have been prepared and applied successfully to 

three sample structures. The first of these structures, shown in 

Fig. 1, consists of a rectangular panel with a centrally located 

tapered integral stiffener through which load is applied and trans- 

mitted to the panel. This structure was previously chosen for use 

in a combined experimental and theoretical investigation (Ref. 8), 

in which experimental data for tensile loading into the plastic 

range were generated. As indicated in Ref. 8, the stiffened panel 

possesses additional desirable features recormnending its use in an 

investigation of discrete-element, plastic analysis methods, namely, 

1) 

2) 

3) 

The elastic structural analysis of the stiffened 

panel is representative of that associated with 

aerospace structures. 

The diffusion of the load into the panel causes 

high stress gradients in the elastic range, re- 

sulting in a significant stress redistribution 

in the plastic range. 

The shape of the structure is such that the 

analysis can be carried out very conveniently 

by standard matrix methods. 

In addition to the combined investigation of Ref. 8, the stif- 

fened panel has been used in a theoretical investigation (Ref. 31) 

to determine the effects of initial anistropy on plastic and creep 

response. Both of these references employ discrete-element analy- 

ses similar to the predictor procedure associated with the stress 

and strain methods described in Section 3. 
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The second sample structure, a uniformly loaded notched bar, 

as shown in Fig. 2, was studied experimentally in Ref. 32 to deter- 

mine the plastic behavior in the region of the notch under constant- 

amplitude cyclic loading involving equal tension and compression. 

The dimensions of the notched bar are such that the elastic stress- 

concentration factor is 2 at the root of the notch. Although the 

experimental data given in Ref. 32 are limited to local plastic 

conditions at the root of the notch, such data still provide a 

valuable basis for comparison with the computed results of the 

present investigation. 

The third sample structure, representing a simplified wing 

structure, is a multicell box beam of rectangular cross section 

with straight central portion and swept outer portion. Single 

loads are applied at each tip. The configuration of the structure 

and the points of application of the external loads are shown in 

Fig. 3. Experimental data on the elastic behavior of a plexiglass 

model of this structure are presented in Ref. 33. Despite the 

lack of experimental data in the plastic range, the swept box beam 

was chosen for use because it is representative of structures en- 

countered in aircraft design. In addition, there are high stress 

gradients in the elastic range caused by a concentration of stress 

in the vicinity of the reentrant corner formed by the trailing 

edges of the straight and swept portions. The high elastic stress 

gradient results in a more pronounced redistribution of stress in 

the plastic range than in the case of a straight multicell box 

beam. 

The analytical results, as determined in the present investi- 

gation, are now presented and discussed for each of these sample 

structures. 
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Stiffened Panel 

The discrete-element idealization of a quadrant of the stif- 

fened panel is shown in Fig. 4. Consistent with the matrix force 

method, the idealization is comprised of a network of bars and 

shear panels. The stress in a bar is assumed to vary linearly 

along its length, and a constant shear-flow is assumed to exist 

in each shear panel. The stresses and strains in the elements 

adjacent to individual nodes are averaged and are defined at the 

nodes. Thus, the linear influence coefficient matrices, given in 

Eqs. (3.1) and (3.5), relate stresses or strains at the nodes to 

the loads and to initial strains at the nodes. A further discus- 

sion of this idealization and the method of taking into account 

the effects of Poissonls ratio are presented in Ref. 31. An alterna- 

tive idealization, associated with the matrix displacement method 

and involving the same node locations, is also presented in Ref. 34, 

and it is found that both methods yield very similar results for 

the elastic properties. 

As indicated in Fig. 1, the stiffened panel is constructed of 

an aluminum alloy, 2024-T4. Stress-strain curves for rolled sheets 

of this material, obtained from tensile tests in the longitudinal 

and transverse directions of rolling, have been found to differ, 

indicating that the material possesses some degree of anisotropy 

in its plastic behavior. The stress-strain data used in the pres- 

ent investigation were those determined from tests in the trans- 

verse direction. This direction coincides with the direction of 

loading, and is indicated as the y-direction in the figures of 

this section. 

Using the Ramberg-Osgood approximation (Ref. 50), mitten as 

e= ; + (fjrn (4.1) 
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the material constants are 

E = 1.02 x LO7 lb/in. 2 

A = 0.87 x LO5 lb/in.2 

m = 10 

In the analytic treatment of the stiffened panel, as presented 

in Refs. 8 and 31, no specific yield- stress was chosen to define 

the elastic limit of the material. Instead, there was assumed to 

be a nonlinear component of strain, as given by the second term on 

the right-hand side of Eq. (4.1), throughout the entire history of 

loading. In the present investigation, initial yielding is treated 

as a well-defined phenomenon. The yield point in tension, obtained 

from the transverse stress-strain curve of the material, was found 

to be equal to 36,000 lb/in.2, and was the value assigned to co 

in the von Mises yield condition, as given by Eq. (2.1). 

Stresses and strains are assumed to increase linearly with 

load for loadings up to yield. A method of computing the load at 

which yielding begins in at least one element of the idealized 

structure, for initial loading and for subsequent reversed loading, 

is given in Appendix E. 

From the elastic analysis of the stiffened panel, it was found 

that the center of the structure is the most highly stressed point 

and, consequently, is the point at which yielding begins. Curves 

of load versus strain at the center in the loading direction, as 

computed by the various methods of Section 3, are compared with 

the experimental results of Ref. 8 in Fig. 5. 

In Fig. 5a, load versus strain curves, as determined by the 

stress method using the stepwise linearization procedure,are shown. 

Each curve was obtained using a different magnitude of load incre- 

ment. These load increments, written as AP, range from 100 lb 
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to 1000 lb. In the elastic range, the results for all magnitudes 

of load increment are necessarily identical. However, as the load- 

ing progresses further into the plastic range the curves diverge 

and, at a load level of 20 kips, the maximum difference between 

the computed results increases to 12 percent. This divergence is 

attributable to the growing inaccuracies involved in linearizing 

the problem in each step of the incremental process as the load 

increment is increased. 

In the elastic range (P 5 8 kips), the computed results are 

seen to agree quite well with the experimental results. However, 

a continuous divergence of these results is seen to occur as the 

load increases into the plastic range. At the highest level of 

load for which there are experimental data (P = 16.76 kips) the 

difference between the experimental and the computed results is 

22 percent for AP = 100 lb. 

The strain method, using the stepwise linearization procedure, 

was used to obtain the load versus strain curves of Fig. 5b. Once 

again, five magnitudes of load increment, ranging from AP = 100 lb 

to AP= 1000 lb were used in the computations. These curves are 

quite similar to those previously obtained by the stress method 

for corresponding magnitudes of load increment. At P = 20 kips, 

the maximum difference between the various computed results is 

9 percent. At P = 16.76 kips the difference between the compu- 

ted result for AP = 100 lb and the experimental result is 24 per- 

cent. 

The load versus strain curves shown in Fig. 5c were computed 

by the strain method using the predictor procedure,and were ob- 

tained for six different magnitudes of load increment, ranging 

from AP = 50 lb to AP = 1000 lb. As seen from these curves, 

there is a much greater divergence among computed results in this 
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case than in the case of the stepwise linearization procedures 

shown in Figs. 5a and 5b. This large divergence is to be expected, 

since the predictor procedure uses estimated values of initial 

strain at each load level, based on values of plastic strain com- 

puted at the preceding level. As the load level increases, and as 

the loading progresses further into the plastic range, these es- 

timated values of initial strain become less accurate. At a load 

level of 20 kips the maximum difference in computed results is 

34 percent. At P = 16.76 kips, the computed result for 

AP = 50 lb differs from the experimental result by 24 percent. 

Curves similar to those of Figs. 5a-5c could not be obtained 

by the stress method using the predictor procedure. When this tech- 

nique is used in the case of unlimited strain-hardening material 

behavior, a catastrophia numerical instability occurs (Ref. 12). 

This numerical instability is illustrated by the curve of load 

versus strain at the center, shown in Fig. 6 for 10 lb load in- 

crements. The use of larger load increments will result in the 

instability occurring at a lower load level. However, the intro- 

duction of limited strain-hardening into the analysis makes it pos- 

sible to obtain numerically stable solutions if the load increments 

are sufficiently small. In the present problem results have been 

obtained for load increments of 10 lbs and 25 lbs. These re- 

sults are similar to those computed by using 50 lb and 100 lb 

load increments in the previously discussed solution techniques. 

Using the smaller load increments, the divergence of the com- 

puted results compared with the experimental results, as indicated 

in Figs. 5a-5c can, in part, be attributed to the effects of the 

initial anisotropy of the material. An attempt to take these ef- 

fects into consideration was not made in this investigation, but 

they were treated in Ref. 31. It was found that the anisotropic 

analysis of Ref. 31 yielded results which were in slightly better 
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agreement with the test data than did the isotropic analysis. 

Thus, it is felt that a consistent treatment of the effects of 

initial anisotropy within the framework of the kinematic hardening 

theory will give computed results which are more consistent with 

the experimental data. 

An additional potential source of error is in the determina- 

tion of the hardening coefficient. The procedure used in this 

determination, as described in Appendix A, may, in some instance.s, 

yield an excessive stiffness for the elements. 

While the solution techniques, other than the stress method 

using the predictor procedure, are not subject to numerical in- 

stability, and consequently do not require the introduction of 

limited strain-hardening behavior for that reason, the capability 

of treating such behavior was nevertheless provided. This broadens 

the options available in the characterization of the material behav- 

ior, and, as will be discussed in the following section, also makes 

possible the consideration of the phenomenon of plastic collapse. 

Results were obtained using these techniques for the case of 

limited strain-hardening and are compared with corresponding re- 

sults for the cases of unlimited strain-hardening in Fig. 7. These 

results are for the components of normal strain at the center of 

the structure and were all obtained using 50 lb load increments. 

It is seen that the limited strain-hardening-results are closer to 

the test data and diverge from the unlimited strain-hardening re- 

sults as the load increases. This indicates that the limited 

strain-hardening behavior assumed for this material provides a 

better approximation to the actual behavior than does the unlimited 

strain-hardening behavior. It will be noted also that the analyti- 

cal results obtained by the various techniques are in close agree- 

ment. 
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Computed curves of constant-amplitude cyclic load versus 

strain at the center of the structure are presented in Fig. 8. 

The amplitude of load is 15 kips in alternating tension and 

compression. Since there are no available experimental data for 

this structure for unloading and reversed loading, the computed 

results could not be verified. However, these results clearly 

indicate the Bauschinger effect. The initial yield load in ten- 

sion is approximately 8 kips, reversed yielding begins at 

-.9 kips, and subsequent yielding in tension occurs at a load of 

.4 kips. Because of the Bauschinger effect, the magnitude of the 

strain at the end of the first three-quarters of a cycle 

(P = -15 kips) is greater than that at the end of the first 

quarter-cycle (P = +15 kips). 

A cyclic load versus strain curve, such as that given in 

Fig. 8, is of considerable significance in establishing estimates 

of fatigue life based on residual strains or residual stresses. 

The intersection of each of the load versus strain curves of Fig. 8 

with the strain axis represents the residual strain associated 

with an unloading in a particular cycle. The residual strain ob- 

tained at the end of the first half-cycle is approximately one- 

third of that obtained at the end of the first full cycle. This 

is directly attributable to the Bauschinger effect, since it 

causes more plastic deformation to occur in reversed loading than 

in initial loading. 

Two sets of curves of load versus stress in the loading direc- 

tion at the center are presented in Fig. 9. The first set of 

curves compares the stresses for limited and those for unlimited 

strain hardening for tensile loading up to a maximum of 20 kips. 

The results are necessarily identical up to the load at which the 
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perfect plasticity criterion is satisfied at the center of the 

structure (P = 14 kips). At this load, the results diverge, and, 

as expected, unlimited strain-hardening behavior produces stresses 

greater than those determined on the basis of limited strain- 

hardening behavior. It should be noted that the stress versus 

load curve for limited strain hardening does not become perfectly 

flat subsequent to the introduction of perfect plasticity, as 

would occur in the case of uniaxial stress. Instead the curve 

indicates a moderate slope in the perfectly plastic range. The 

variation in the component of stress in the loading direction is 

attributed to the tangency condition imposed on the stress incre- 

ment vector during plastic deformation. 

The second set of curves in Fig. 9 shows constant-amplitude 

(.15 kips) cyclic load versus stress compared for limited and un- 

limited strain hardening. Only a small difference in results is 

indicated at the end of the first quarter-cycle. From the inter- 

section of the unloading curves with the stress axis, it is seen 

that the residual stress component in the loading direction is 

slightly smaller for unlimited strain-hardening behavior. 

Curves of tensile load versus normal stress in the two coordi- 

nate directions at several points along the horizontal line of 

symmetry of the structure (indicated as the x-axis in the figures) 

are shown in Figs. 10a and lob. As indicated in these figures, 

the points under consideration are taken at the center of the struc- 

ture (x = 0), at the edge of the stiffener (x = 0.5), and on 

the panel (x = 1.0). 

The results shown in Fig. 10a were determined for an unlimited 

strain-hardening material. It is seen that the rate of change with 

load of the stress component in the loading direction (a,) at 

x=0 and x = 0.5, decreases, with respect to the linear elas- 

tic behavior, as the load increases beyond initial yielding. 
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However, at x = 1.0 the rate of change of (J 
Y 

initially in- 

creases and then decreases with continued loading. The initial 

increase can be attributed to the stress redistribution which 

occurs between elastic and neighboring plastic regions. The in- 
crease first occurs at a load at which the region at x = 1.0 is 
still elastic, while its neighboring region is plastic. Therefore, 

'the stresses in the structure are redistributed such that the 

elastic region becomes more severely stressed. This condition 

persists until plastic flow develops at x = 1.0. Beyond the 

load at which this occurs (P = 16 kips), a decrease in the 

rate of change of 
OY 

is indicated. 

The redistribution of stresses acting in the transverse direc- 

tion (a,) results in a reversal of the sense of these stresses, 

from compressive to tensile, at each of the points considered. 

The load versus stress curves of Fig. lob were determined for 

a material exhibiting limited strain-hardening behavior. The re- 
sults are necessarily identical with those presented in Fig. 10a 

up to the load at which perfect plasticity is introduced into the 

structure. This initially occurs at the center of the panel, at 

a load of approximately 14 kips. The rate of change of 
OY 

with 

load decreases much more rapidly at the perfectly plastic point 

(x = 0) than at a strain-hardening point (x = 0.5). Consequently, 

the load-stress curves at these points intersect, resulting in a 

reversal of the relative magnitudes of the stress levels. The 

stress behavior in the panel at x = 1.0 is seen to be very simi- 

lar to that which occurs in the case of unlimited strain-hardening 

behavior. 

The stresses c X at each of these points change from com- 

pressive to tensile. Although this behavior is similarly exhibited 

in Fig. lOa, the curves for x = 0.5 and x = 1.0 differ in 
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Fig. lob in that they intersect at a load of approximately 19 kips, 

resulting in a reversal in the relative magnitudes of the stresses. 

The total strain distribution along the horizontal axis of 

symmetry is shown, for limited and unlimited strain-hardening 

behavior, in Fig. 11. The computed results were obtained for a 

load of 16.60 kips, and are compared with test data taken at 

16.76 kips. At this level of loading, perfectly plastic behavior 

has barely been initiated in the structure. Thus, there is a' 

negligible difference in the computed results. A comparison with 

test data indicates that, in the vicinity of the center of the 

structure, the computed results predict lower strains in the load- 

ing direction relative to the test data than in the transverse 

direction. For x > 1.0, the correlation with the test data, in 

both the transverse and loading directions, is quite favorable. 

The stress distribution along the horizontal axis of symmetry 

is shown in Fig. 12 for two load levels. The first level, 

P = 8 kips, corresponds to the maximum load at which the entire 

structure is in the elastic range, and the higher load level cor- 

responds to that used to obtain the strain distribution curves 

shown in Fig. 11. Results for limited and unlimited strain- 

hardening behavior are also given in Fig. 12. A comparison of the 

curves for 
OY 

shows the effect of plasticity in decreasing the 

gradient of this stress. This decrease is more pronounced for 

limited strain-hardening behavior than for unlimited strain- 

hardening behavior. The curves for the ax stress component 

show that the compressive elastic stresses become tensile stresses, 

along almost the entire length of the horizontal symmetry axis of 

the structure, when the loading is in the plastic range. Figures 13 

and 14 relate to the problem of plastic collapse and are discussed 

in Section 5. 
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Notched Bar 

The discrete-element idealization of a quadrant of the notched 

bar is shown in Fig. 15. A fine network of triangles is concen- 

trated in the vicinity of the notch, with a coarser network in the 

remainder of the specimen. A constant stress field is assumed to 

exist within each element. The linear elastic characteristics of 

the structure were determined by application of the matrix dis- 

placement method. 

As indicated in Fig. 2, the material used in the notched bar 

is an aluminum alloy, 2024-T3. Stress-strain curves of this mate- 

rial for initial tensile loading differ greatly from those ob- 

tained for initial compressive loading. This peculiar material 

behavior poses some difficulties in the present analysis, since 

the von Mises yield condition assumes an initially isotropic mate- 

rial in which the yield stresses in the normal directions are not 

only equal to each other, but are also initially equal in tension 

and compression. A procedure to take this particular behavior 

into account within the framework of the kinematic hardening 

theory is presented in Appendix F. 

With the Ramberg-Osgood approximation written as in Eq. (A-11), 

the material constants associated with this material for initial 

tensile loading are; 

E = 10.0 x LO7 lb/in. 2 

co.7 = 0.53 x lo5 lb/in.2 

n = 37 

and for initial compressive loading; 

E = 10.0 x lo7 lb/in. 2 

co.7 = 0.47 x lo5 lb/in.2 

n = 8.1 
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These material properties were obtained from Ref. 35. 

All of the computed results for the notched bar were obtained 

by the stress method using the predictor procedure. .This choice 

was made on the basis of available storage in the computer program. 

The program implementing this technique allows a larger number of 

plastic elements to be considered than any of the programs asso- 

ciated with the other solution techniques. Because of the numeri- 

cal instability problem encountered with this technique, limited 

strain-hardening was assumed and 10 lb load incremnts were used 

throughout. 

Local stress versus strain histories at the root of the notch, 

computed for a single cycle of loading for each of several load 

ranges, are presented in Fig. 16. The amplitude of load is denoted 

in all the figures pertaining to the notched bar by S-, where 

S is the nominal net-section stress. Test data from Refs. 32 and 

36 are shown in Fig. 16, and can be compared with the computed re- 

sults for each of the four load ranges considered. The comparison 

indicates that while the agreement is rather good for the strains 

in both initial and reversed loading, there is a definite tendency 

for the analysis to predict lower stresses in the reversed loading 

part of the cycle. This can be attributed to the introduction of 

perfect plasticity into the analysis on the basis of achieving 

numerical stability in the computations, rather than, and prior to, 

its introduction on the basis of the actual physical behavior of 

the material. The loci of the computed half-cycle and full-cycle 

residual stresses, as influenced by the nominal stress amplitude, 

are shown as dashed lines in the figure. A comparison with the 

residual stresses obtained experimentally in Ref. 36 is favorable. 

Curves of cyclic load versus strain at the notch root are 

presented in Fig. 17. Test data were available (Ref. 36) for 

three cycles of loading for each of two load ranges, S = 45 ksi, 
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and S = 50 ksi. The correlation between the analytical and test 

results for the maximum and minimm strains is quite good, the 

largest difference being of the order of 6 percent. Although the 

residual strains predicted by the analysis for the first half and 

full cycle of loading are quite accurate for both load ranges, 

the correlation with test data becomes poorer in the second and 

third cycles of loading. The largest discrepancy in the 45 ksi 

loading case is 33 percent, and occurs after two and one-half 

cycles of loading; in the 50 ksi loading case the largest dif- 

ference is 20 percent, and occurs after two full cycles. 

It is felt that,the discrepancies in the residual strains can 

be reduced by a more accurate representation of the cyclic stress- 

strain behavior of the material in the 2nd and 3rd cycles. As in- 

dicated in Ref. 32, a considerable variation of the local stress 

range occurs during the first 15 to 20 cycles, after which the 

stress range remains stable. Therefore, for purposes of fatigue 

estimates, a stabilized cyclic stress-strain relation should be 

employed in determining the hardening behavior of the material. 

However, for purposes of comparison with test data, the stress- 

strain behavior for the second and third cycles was required for 

use in the present analysis. The material constants associated 

with the Ramberg-Osgood approximation given in Eq. (2.19) were de- 

termined from faired curves through some limited second and third 

cycle test points of Ref. 36. The stress-strain data were deter- 

mined by means of tests on unnotched specimens. The values of the 

constants for tensile loading are; 

E = 10.0 x lo7 lb/in.2 

a0.7 = 0.53 x LO5 lb/in.2 

n = 7.5 
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and for compressive loading; 

E = 10.0 x lo7 lb/in.2 

co.7 = .49 x lo5 lb/in.2 

n = 8.1 

Figure 18 shows the first-cycle stresses at the notch root 

for reversed loading. Four characteristic values of stress are 

significant: the maximum, residual after unloading (half-cycle), 

minimum, and residual after completing the cycle (full-cycle). 

As was the case with the residual strains occurring in the first 

cycle of loading, and as indicated in Fig. 16, there is good cor- 

relation between the computed results and the test data for both 

the half-cycle and full-cycle residual stresses. A procedure that 

can be used to compute the residual stresses and strains, on the 

basis of either the stress method or the strain method, is pre- 

sented in Appendix G. 

With the exception of the higher nominal stress ranges, a 

comparison of analytical and experimental results for the maximum 

and minimum stresses shows good correlation. Discrepancies at 

the higher stress ranges can be attributed to the necessarily 

premature introduction of perfect plasticity into the analysis in 

order to avoid numerical instability. 

The variation of the plastic stress-concentration factor with 

the nominal stress range is shown in Fig. 19. A comparison be- 

tween the experimental results of Ref. 32 and the results of the 

present analysis are presented for monotonically increasing tensile 

loads, where the factor is denoted by Kp, and for reversed load- 

ing from tension in the first cycle, where the factor is denoted 

by K;. The value of K 
P 

is given by 
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K= 
P 

where c is the local stress at the 

direction, and the value of K' 
P 

_a 
S 

can 

(4.2) 

notch root in the loading 

be computed from 

K’ = %x3x Kp - u 
P (s- - 9 

where S is the maximm nominal stress in tension, and S 

and CT are the nominal and local stresses, respectively, for 

which K' 
P 

is sought. 

As indicated in Fig. 19, the elastic stress concentration 

factor determined in the present analysis is slightly smaller than 

that given in Ref. 32. As the loading progresses, plastic de- 

formation diminishes the stress concentration. A comparison of 

the two sets of results, as shown in Fig. 19, is quite favorable, 

except near the upper end of the nominal stress range for both 

the K and K' curves. 
P P 

This discrepancy mst, once again, be 

attributed to the premature introduction of perfect plasticity. 

The development of the regions of plasticity in the case of 

initial loading and in the case of unloading and reversed loading 

is illustrated in Figs. 20a and 20b, respectively. In Fig. 20a, 

a peculiar pattern of plastic elements occurs at loadings of 

S = 48 ksi and S = 50 ksi. At S = 48 ksi, there is an isola- 

ted plastic element surrounded by elastic elements. Two possible 

explanations for this behavior are as follows: 

1) The procedure used to take into account the ef- 

fects of the differing tensile and compressive 

stress-strain behavior , presented in Appendix F, 

may introduce inaccuracies into the analysis. 
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2) The discrete-element idealization may not 

adequately represent the true stress pattern 

of the actual structure. 

Additional computations have been carried out using the 

stress method in conjunction with the predictor procedure for 

monotonic tensile loading up to S = 50 ksi. The procedure out- 

lined in Appendix F was not used, and elastic, perfectly plastic 

behavior was assumed. The results did not indicate the peculiar- 

ity previously obtained and shown in Fig. 20 for S = 50 ksi. 

Therefore, it would appear that the first explanation above has 

considerable validity. It should be noted also that the isolated 

elastic element was found to be on the verge of yielding, while 

the isolated plastic element had just barely yielded, so that the 

irregularities indicated are not very pronounced. 

Swept Multicell Box Beam 

The discrete-element idealization of the swept multicell box 

beam is shown in Fig. 21. The idealization consists of a network 

of bars and triangular elements. The idealization of the webs is 

accomplished by distributing their stiffness properties with re- 

spect to bending of the structure into the bars, and using rec- 

tangular elements in pure shear to account for their shearing be- 

havior. A linear stress variation is assumed to exist in the bars, 

the stresses in the triangles are assumed to be constant, and a 

constant shear flow is assumed in the shear panels. The bars are 

indicated in Fig. 21 as double lines. The applied loads and their 

points of application are shown in Figs. 3 and 21. The analysis 

assumes that the concentrated loads are applied equally at the 

upper and lower surfaces. 
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As previously indicated, no experimental data for this struc- 

ture loaded in the plastic range are available, so that verifica- 

tion of the analytical results was not possible. The material 

properties chosen for use in the present analysis are the same as 

those of the stiffened panel. 

Results for cyclic load versus strain and cyclic load versus 

stress are shown in Figs. 22 and 23, respectively. The strains 

and stresses are measured on the upper or lower surface at the root 

of the trailing edge of the swept portion, and are normal compo- 

nents in the direction of the trailing edge. By chance, the curves 

indicate a closed hysteresis loop for a constant-amplitude loading 

of P=5kips. 

The region of plasticity developed at a load of 5.5 kips 

is illustrated in Fig. 24. As indicated by the shaded region, 

plasticity is more widespread in the swept portion than in the 

unswept portion. 
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5. FAILURE CRITERIA - PLASTIC COLLAPSE 

In the preceding sections, we have been concerned with the 

establishment of methods for determining the response of a stable 

structure to given loads, including intermittently applied loads 

of varying intensity and distribution. We now consider the prob- 

lem of interpreting such responses in terms of structural integrity. 

In doing so, we limit attention to those phenomena in which plastic 

behavior plays a significant role. Thus, fatigue associated with 

cyclic stressing in.the elastic range is not considered. The 

problem of buckling is taken up in a later section. 

The phenomena of concern here are alternating plasticity, or 

low-cycle fatigue, incremental collapse, shakedown, and plastic 

collapse. The first of these involves rupture of the material 

due to plastic deformations occurring alternately in one sense and 

then in the other. The analysis procedures discussed in the pre- 

ceding sections can be used to determine the stress and strain 

history associated with a given sequence of loadings. In order 

to determine whether rupture will occur as a consequence of these 

loadings, it would be necessary to have available appropriate test 

data. Such data could be obtained in a test of a simple specimen 

of the same material as the structure, and in which the stress and 

strain history at some critical point in the structure are approxi- 

mately reproduced. The use of data of a more generalized nature 

does not appear to be feasible at the present time, except in 

cases where the critical stresses and strains are essentially 

uniaxial and the cyclic loading is constant in amplitude. In 

such cases, data from constant amplitude tests on a tension- 

compression specimen could be used. A simple example of the appli- 

cation of such a procedure is given in Ref. 32, and relates to the 

notched bar discussed in the preceding section. 
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Incremental collapse is a phenomenon associated with inter- 

mittent loading causing plastic strains that are in the same 

sense in successive loadings. These loadings are such that, if 

applied individually to the virgin material, they will not cause 

excessive yielding, but, applied successively, the progressive 

straining produced increases without limit. In practice, either 

rupture will occur at some point, or the deformations will reach 

a level beyond which the vehicle cannot function properly. Thus, 

in an analytical determination of failure it would be necessary 

either to apply test data on strain levels at which rupture occurs, 

or to establish criteria on practical deformation limits. It 

should be noted that thermal effects can also play an important 

role in incremental collapse (Ref. 6). 

Shakedown is related to incremental collapse in that it is 

also associated with intermittent loading which may cause progres- 

sively increasing plastic strains. However, in this case the 

plastic strains do not increase without limit, but tend to stabi- 

lize after a sufficient number of cycles of loading (Ref. 37). 

The stabilization is due to development of residual stresses that 

reduce the stresses associated with the most severe loadings to 

the point where they remain within the elastic range of the mate- 

rial. In the case of strain-hardening materials, the shifting of 

the yield points or yield surface in accordance with the Bauschinger 

effect also plays an important role in shakedown (Ref. 38). 

In order that shakedown occurs,the loads must be appropriately 

bounded. Theorems have been established that serve to determine 

whether, in the case of a particular structure, the given loads 

are so bounded (Refs. 37 and 38). Their form depends upon whether 

the material is perfectly plastic or exhibits limited or unlimited 

strain hardening. Essentially, these theorems provide a test for 

the existence of a residual stress distribution such that prescribed 
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loadings cause stresses only within the elastic range. Such a 

residual stress distribution need not be the actual residual 

stress distribution attained in an actual shakedown process, but 

must satisfy the conditions of equilibrium under no external load. 

Shakedown theorems have been-established thus far only for uni- 

axial stress. In view of this limitation, the shakedown phenomenon 

was not pursued further in the present investigation. 

Plastic collapse represents a state in which a structure can, 

at some point in the course of a single loading, experience con- 

tinued and unlimited straining without a further increase in the 

loading. It is necessarily associated either with perfectly plas- 

tic behavior or with limited strain-hardening behavior of the 

material of the structure. That is, the stress-strain characteris- 

tic must be such that, beyond a certain level of strain, the yield 

surface remains stationary. In truss and framed structures the 

onset of plastic collapse is associated with the formation of a 

collapse mechanism. Because of the inability of certain members 

to resist further increases in load in the case of truss struc- 

tures, or the formation of yield hinges in the case of framed 

structures, the structure becomes in effect a mechanism. 

The concept of a plastic collapse mechanism is not as 

straightforward in the case of a continuum subjected to multiaxial 

stress. It must then be thought of in terms of the formation of 

a region of perfect plasticity which completely impedes the trans- 

mission of increased load through the structure. 

The treatment of plastic collapse up to the present has been 

based on the assumption that the structure retains its initial 

geometry during the loading process. It is also usually based on 

the application of one or the other of two alternative theorems 

developed originally for perfectly plastic materials (Refs. 39 

and 40). One states that, given a distribution of loading, the 
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collapse loading is the maxirmm loading with that distribution for 

which a stress distribution, satisfying all equilibrium conditions 

and nowhere exceeding the limits imposed by the stress-strain char- 

acteristic, can be found. The other states that, given a distribu- 

tion of loading, the collapse loading is the minimm loading with 

that distribution which is in equilibrium with the stresses in the 

perfectly plastic portions of the structure in a collapse mechanism. 

The minilTasm is taken with respect to all possible collapse mechanisms. 

The first of these theorems has been shown by Neal (Ref. 38) to 

apply to materials with limited strain hardening for the case of 

uniaxial stress. 

These theorems may be applied in a direct determination of 

the collapse loading, without recourse to an analysis of the re- 

sponse of the structure prior to collapse. The procedures involve 

essentially a search for the appropriate collapse mechanism. In 

a complex, highly redundant structure there will be a large number 

of possible collapse mechanisms, so that sophisticated mathemati- 

cal techniques, such as linear programming, must be used in carry- 

ing out this search (Ref. 10). 

The philosophy adopted in the present study is that plastic 

collapse will seldom be treated in .practice as an isolated problem. 

In most cases of structural analysis , particularly in the case of 

flight vehicles, the behavior of the structure during the loading 

process is clearly of interest. It would thus appear advantageous 

to make use, if possible, of information on this behavior in a 

determination of the plastic collapse loading. 

By making the assumption of limited strain hardening in ap- 

plying the plastic analysis procedures presented in preceding 

sections, we can use these procedures to determine the growth of 

regions of perfect plasticity as the loading proceeds. The 
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problem of plastic collapse may then be treated by determining at 

what point in the loading process the perfectly plastic regions 

have grown sufficiently to make the structure a mechanism with 

respect to the applied loading. It will be noted that the assump- 

tion is made here also that the structure retains its initial 

geometry during the loading process. 

Proceeding in this fashion, we rewrite Eqs. (3.9) here for 

convenience, 

H12 

H22 

[ B3 ] bP$+ [ H32 

1 
J 

(a~(~) + 1 H 1 J&(3) 
1131’1 

(3.9a) 

1 J&3) 
J 1 (3.9b) 

1 J&3) 
J 1 l (3. SC) 

The various quantities in these equations are defined in Section 3. 

It will be recalled that superscript (1) refers to elastic ele- 

ments, superscript (2) to strain-hardening elements, and super- 

script (3) to perfectly plastic elements. 

In the case of structures, such as truss and framed struc- 

tures, in which the stresses are essentially uniaxial, it is clear 

that when the collapse load is reached the stresses experience no 

further change as collapse proceeds. The stresses in the per- 

fectly plastic regions must remain constant, and the same is true 

of stresses elsewhere in the structure, since the loads do not 

change. In the case of structures in which the stresses are multi- 

axial, the corresponding situation is not as obvious, since 

stresses in a perfectly plastic region can change as plastic flow 

proceeds, provided that the stress point remains on the yield 

surface. 
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In spite of this, it has been shown by Drucker, Prager and 

Greenberg (Ref. 41) for an elastic , perfectly plastic continuum 

that, when the plastic collapse load is reached, there is no 

further change in stress anywhere in the continuum. It is shown 

in Appendix H that this conclusion applies also to a continuum 

with limited strain-hardening properties such that the limiting 

stress is reached at finite values of strain. 

Under these circumstances, it can be concluded that, in 

Eq. (3.9c), S*(p) 
1 I 

and J.~E(~) 
I I 

will both be zero when the 

plastic collapse loading is reached. In addition, in accordance 

with the definition of plastic collapse, Eq. (3.9c) should have a 

nontrivial solution when CAP> is zero. Consequently, Eq. (3.9~) 

reduces to 

i 
1 I 

H33 J IA' 
(3) 

I 
= 0 (5.1) 

The condition for the existence of a nontrivial solution to 

Eq. (5.1) is the singularity of 
[ 

1 
H33 I' A further condition for 

plastic collapse is that the plastic strain increment vector for 

each perfectly plastic element be normal to the corresponding 

loading surface. The relative magnitude of the elements in the 

solution vector, @E (3) 
I 

, of Eq. (5.1) must, therefore, be such as 

to satisfy this condition, expressed in the following equation 

reproduced from Section 3 and developed in Appendix C, 

(3.21) 

It is, in fact, conceivable that 1 
H33 1 may, at some 

point in the loading process, become singular without a plastic 

collapse state being indicated. This may occur if the loading is 

not appropriate to the particular collapse mechanism associated 

with the singularity of r 1 
1 H33 I’ 
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It may be stated, in general, that singularity of 1 
H33 J 

is associated with linear dependence of stress components in the 

perfectly plastic elements. This linear dependence is easy to 

see in the case of simple redundant structures such as redundant 

trusses. In such a structure, redundant members may be imagined 

to be removed and replaced by pairs of equal and opposite external 

forces of the same magnitude as the internal forces in these mem- 

bers. If the members removed are such that the remaining struc- 

ture becomes a mechanism, the forces replacing them must be related 

in order to satisfy equilibrium. 

In the case of a two or three dimensional continuum replaced 

by a discrete-element idealization, there are various situations 

which can give rise to a plastic collapse mechanism. For example, 

if all elements adjacent to a node are perfectly plastic, the 

stresses in those elements must be related in order to satisfy 

equilibrium at the node. 1 1 Consequently, the matrix 1 H33 J will 

be singular and a collapse mechanism will be indicated, even 

though the perfectly plastic region may be a contained region. In 

this case plastic collapse will occur only if an external force is 

actually applied at the node in question. Similarly, if a region 

of perfect plasticity completely separates the structure into two 

parts, the equilibrium of each part will require that the stresses' 

in the perfectly plastic elements be related. Thematrix 
I 

1 
H33 J 

will again be singular and a plastic collapse mechanism indicated. 

In this case, p lastic collapse will occur only if the external 

loading is such that there is necessarily a transmission of load 

across the region of perfect plasticity. It can be presumed, in 

such cases, that the region of perfect plasticity associated with 

a specific loading will develop during the loading process in such 

a way as to satisfy the condition of normality of the strain incre- 

ment vectors to the loading surface. 
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The two conditions necessary for collapse may be combined. 

Recalling that 
f 

q in Eq. (3.21) is a matrix in which only 

every third column is nonzero, we rewrite Eq. (3.21) in the equiva- 

lent form, 

where G 1 r I is obtained from IL; 1 
is obtained fr!rn 

by deleting the zero 

colunms, and by deleting 

those elements which mltiply the zero columns of PE ' 1 4’ 
Substituting Eq. (5.2) into Eq. (5.1), we obtain, 

[ H33 ][ i3, ] b~:~)) = 0 

or 

(5.2) 

(5.3) 

(5.4) 

in which I- 1 
1 H33 1 

is formed from 1 1 l H33 1 by linearly combining 

the three columns in each set corresponding to a structural ele- 

ment in accordance with Eq. (5.3). Since P 1 
1 H33 J is not a 

square matrix, satisfaction of Eq. (5.4) cannot be established 

solely by a single determinant evaluation. It can, however, be 

established by extracting from I" 1 any square matrix of 
lH33J, 1 

order equal to the number of columns in 1 ii33 J and testing it 

for singularity. If it is singular, the solution vector may be 

substituted into the remaining linear equations associated with 

the remaining rows of 1" 1 
1 H33 J to check whether they are also 

satisfied. 
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The form of Eq. (5.4) suggests that there is linear dependence 

among columns of I- 1 
1 H33 1’ We know from matrix theory (e.g. Ref. 42, 

p. 56) that if there is linear dependence among rows of c 1 
1 H33 1’ 

there must also be linear dependence among columns of that matrix, 

and Eq. (5.4) suggests that this linear dependence is preserved 

in the contraction to c- 1 
1 H33 J’ 

An alternative approach to the plastic collapse problem in- 

volves a more direct application of the governing relations as 

they are set up for analysis prior to collapse. As shown in Sec- 

tion 3, application of the condition of normality of the strain 

increment vector and tangency of the stress increment vector to 

the yield surface for each perfectly plastic element permits the 

rewriting of Eq. (3.9c) in the form, 

[zc3'] +) = f B3 ] +P] + [ H32 ] +E(~)} 

where 

[~(~)1= bE1 - [H lp;jl 
1 1 &I 133Jl hl 

(3.24) 

and (AU) is defined in Eq. (3.22). 

Applying also the fact that there will be no further change 

in strain in the strain-hardening elements and the fact that 

plastic collapse implies straining in the perfectly plastic ele- 

ments without increase in load, we can reduce Eq. (3.24) to the 

form, 

(3.25) 

(5.5) 
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While it is known from the extended theorem of Drucker, 

Prager and Greenberg, presented in Appendix H, that the stress 

increments in CA4 are necessarily zero, and that, consequently, 

the columns in 
[ I 
z(3) that are multiplied by these elements can 

be arbitrary, satisfaction of Eq. (5.5) for nonzero strain incre- 

ments still requires that c, (3) 
1 1 be singular. This suggests 

strongly that there is linear dependence among the remaining col- 

umns of 
[ 
ZC3)]. These columns are precisely the columns appear- 

ing in P 1 
1 H33 1 

in Eq. (5.4). Thus, singularity of the matrix 

[ I 
z(3) is an alternative form of the collapse criterion. It has 

the advantage that it combines both of the conditions for collapse 

and involves the evaluation of the determinant of a matrix which 

is set up routinely in the course of analysis. 

It will be realized, of course, that a test for singularity 

of a matrix given in terms of digitally computed numbers cannot be 

an exact process because of round-off. The test must, therefore, 

be based on the determinant of the matrix attaining values that, 

while not actually zero, are small compared with other values ob- 

tained in earlier steps. 

Both criteria were applied to the stiffened panel specimen. 

Application could not be made to the other two sample structures 

because of computer storage limitations. In the application to 

the stiffened panel specimen of the criterion that the matrix 

E I 
z (3) become singular, it was found that the determinant of this 

matrix grew very rapidly in value as the matrix enlarged with the 

spread of perfect plasticity. This is attributable to the large 

size of the numbers entering this matrix. It was necessary, con- 

sequently, to apply a scaling process. It was then found that the 

determinant values increased moderately with enlargement of the 

matrix until the region of perfect plasticity had grown to the 
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'point where plastic collapse could be expected to occur. There 

was subsequently a decrease in the value of the determinant, but 

at a moderate rate, rather than the abrupt decrease to a value 

near zero that one would expect on the basis of singularity of 

[zC3) . 
I 

This was attributed to the manner in which the matrix 

[H] had been set up in the linear analysis of the structure. As 

discussed in Section 4, the stresses and initial strains which 

this matrix serves to relate were defined at nodes rather than 

within elements of the structural idealization. It is believed 

that, in transforming the matrix from an element to a nodal basis, 

the satisfaction of equilibrium implicit in its initial formation 

tended to be made less precise. This might well have had the ef- 

fect of preventing the matrix L I z(3) from closely approaching a 

condition of singularity. 

c 1 The other criterion was not applied fully. The matrix l H33 ] 

was tested for singularity, but the normality condition for strain 

increment vectors was not checked. Applying a scaling process to 

[ 
1 

H33 J' the determinant of this matrix was found to decrease with 

enlargement of the matrix, this decrease being much more pronounced 

at the nominal point of collapse than previously. 

The pattern of perfectly plastic nodes at the nominal point 

of collapse, that is, the point at which a plastic collapse mecha- 

nism can be considered to exist, is shown in Fig. 14. It is seen 

that the region of perfect plasticity fully separates the two 

stiffeners from one another. A plot of normal plastic strain in 

the direction of loading at the center of the panel versus applied 

load is shown in Fig. 13 for loads increasing to values exceeding 

the nominal collapse load. It is seen that the rate of straining 

increases rapidly, but not abruptly, in the neighborhood of the 

nominal collapse load. This again is attributed to the manner in 

which the matrix [H] had been set up. 
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It should be noted, finally, that a plastic collapse criterion 

can similarly be established for use in conjunction with the strain 

method. Just as singularity of the matrix 
[ 
2(3) ] in Eq. (3.24) 

constitutes a criterion for collapse in the stress method, it is 

reasonable to expect that singularity of the matrix 
[ I 
Yc3) in 

Eq. (3.37) will constitute a criterion for collapse in the strain 

method. It can, in fact, be shown that these two matrices are 

closely related, as follows, 

[d3)] = f*E:[ZC3)] 

Since mltiplication by 1 EA transforms 

strains, and since linear dependence among 

tate linear dependence among corresponding 

(5.6) 

stresses into elastic 

stresses will necessi- 

elastic strains, the 

argument presented previously in connection with the singularity 

should carry over to the singularity of f I d3) . An 
ion would be the singularity of the matrix 

which is equal to 

applied along with the normality of the plastic strain increment 

vector to the yield surface in the perfectly plastic elements. 
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6. PLASTIC BUCKLING 

In order to describe buckling phenomena in plate and shell 

structures, it is necessary to include the effect that membrane 

stresses in the prebuckling configuration have on subsequent de- 

formation-. In classical plate and shell theory this effect is 

accounted for by the inclusion of higher order terms containing . 

the membrane stresses in the strain energy functional. This leads 

to nonlinear terms in the governing equations. 

Similarly, an analysis of the buckling problem using discrete- 

element techniques also must include the effect of initial membrane 

stresses on subsequent deformation. This may be accomplished, 

within the framework of the displacement or stiffness method of 

discrete-element analysis, by the introduction of an additional 

component part to the usual stiffness matrix for bending of the 

structure. This component part, derivable from the higher order 

terms of the strain energy functional, has the effect of reducing 

the stiffnessof the idealized structure when the membrane stresses 

are compressive. A clear explanation of the meaning, and a con- 

sistent development, of this additional matrix can be found in 

Ref. 22. Consistent with the terminology of Ref. 22, the addi- 

tional matrix is referred to here as the initial stress stiffness 

matrix. 

This matrix was first used for an elastic buckling analysis 

of flat rectangular plates in Ref. 23. A more recent publication, 

Ref. 24, uses the stiffness method approach to solve for the elas- 

tic buckling of rectangular plates with various edge loadings and 

boundary conditions. Extensive numerical results are presented in 

Ref. 24, all of which indicate excellent agreement with correspond- 

ing results based on other analytical techniques. 
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A similar technique may be used in the plastic buckling analy- 

sis of structures. It requires a further modification of the 

stiffness matrix to take into account the altered stiffness prop- 

erties of the material associated with plastic deformation. This 

modification is effected by altering the usual elastic bending 

stiffness matrix so that it contains coefficients which depend on 

the state of plasticity in the structure and, therefore, the state 

of stress. 

The extent to which the elastic bending stiffness matrix is 

modified depends on the plastic buckling theory used. Plastic 

buckling analyses based both on flow theory and on deformation 

theory have been used, the former, for instance in Refs. 43 and 48 

and the latter in Refs. 45-47. A comparison of results from some 

of these references with experimental data (Ref. 44) shows the 

deformation theory results to be in better agreement with ex- 

periment than the flow theory results. This is paradoxical, 

since, in the case of some simple stable structures, flow theory 

provides results which are in better agreement with experiment than 

corresponding results using deformation theory. Furthermore, de- 

formation theory contains fundamental inconsistencies not present 

in flow theory. 

Two different explanations have been offered for the inaccuracy 

of flow theory in this problem. One of these is that the L&y-Mises 

flow theory, based on the second invariant of stress, is inadequate 

to provide a proper description of material behavior in this situa- 

tion, so that more sophisticated flow theories are required. This 

point is made strongly by Sewell (Ref. 18), who shows that bifurca- 

tion buckling is quite sensitive to the direction of the normal to 

the loading surface and that, consequently, the shape of this sur- 

face in a local region near the stress point is very important.' 

1 Sewell discusses the various plastic buckling theories in Sec- 
tion 2.6 of Ref. 18. 
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In another reference (Ref. 17), Batdorf discusses this point 

and shows, on a qualitative basis, that the slip theory of Batdorf 

and Budiansky can provide an explanation of plastic buckling be- 

havior. He also states that the qualitative argument presented 

"justifies the use of deformation theory in the analysis of the 

plastic buckling of plates." 

The other explanation is that the plastic buckling of plates 

and shells is sensitive to small imperfections, so that the treat- 

ment of the problem as a bifurcation phenomenon may lead to errors. 

This has been shown by Onat and Drucker (Ref. 19) in an analysis 

of the torsional buckling of a compressively loaded member of 

hollow cruciform cross section. Besseling (Ref. 20) has extended 

this work to the case of a member of solid cruciform cross section, 

and reached similar conclusions. 

Although these theoretical objections to bifurcation buckling 

analysis based on deformation theory do exist, agreement with ex- 

periment suggests the use of such analysis in engineering computa- 

tions (Ref. 49). Consequently, a plastic buckling theory based on 

a deformation theory of plasticity was used in the present analysis. 

The manner of introducing deformation theory is based on the work 

of Stowell (Ref. 46). 

It should be noted that the basic procedure developed in the 

present work can readily accommodate other plasticity theories. 

In fact, all that is necessary to incorporate another theory is to 

redefine certain coefficients which enter into the modified bend- 

ing stiffness matrix. 

Discrete-Element Buckling Formulation 

A discussion of the formulation of the elastic buckling prob- 

lem on the basis of the discrete-element displacement method can 
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be found in Refs. 22-24. The technique of analysis is reviewed 

below and extended to the plastic buckling problem. 

The equationrelating the nodal generalized forces to nodal 

generalized displacements can be written as 

(fl = [KlC 61 (6.1) 

where 

Cfl is the vector of nodal generalized forces 

[Kl is the stiffness matrix of the structure 

(61 is the vector of nodal generalized displacements 

The s;iffnTss matrix, [K], can be separated into two parts, 

a matrix ‘I,% J’ representing the bending stiffness of the struc- 

ture, and 1 
1 %I J’ the initial-stress stiffness matrix, repre- 

senting the modification of stiffness due to membrane stresses in 

the prebuckling state. The bending stiffness matrix, [ 5 1, is 
either the usual matrix for elastic deformation or, as discussed 

above, it may be appropriately modified to take into account the 

effects of plasticity. 

The buckling problem is formulated on the basis of the homoge- 

neous problem associated with zero lateral external loads, that is 

{f) = 0. Thus Eq. (6.1) assumes the form 

[Klt6) = ([%]+[$]) ca=o (6.2) 

In this form, of the stiffness 

matrix, det = 0, is the buckling criterion. 

The state of stress the determinant to be zero 

is the critical state of stress. 
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The problem can be recast in another form. For the elastic 

case, the initial-stress stiffness matrix may be written as 

[ 1 %J 1 = A[ ig J (6 ..3) 

where 1 
FfJ represents the initial-stress stiffness matrix com- 

puted for a nominal stress state having the desired distribution. 

The parameter, h ,is a multiplying factor determining the actual 

buckling stress state, and is initially unknown. 

Substituting Eq. (6.3) into Eq. (6.2), we obtain the equation 

( 1 
[%,+h fL l [6)=0 

) 

or 

or9 alternatively, 

(6.4a) 

(6.4b) 

(6.4~) 

Equation (6.4~) is in the form of a generalized eigenvalue problem. 

After solution of this problem, the critical stress state is de- 

termined by multiplying the nominal stress state assumed initially 

by the eigenvalue, A. 

When the prebuckling stresses are in the plastic range, the 

elastic bending stiffness matrix, 1 
1 53 I9 in Eq. (6.4), must be 

replaced by the modified bending stiffness matrix, [ < 1. This 

mtrix depends upon the state of plasticity and is therefore a 

function of stress. Consequently, the eigenvalues are now also 

functions of stress. This substantially complicates the nature of 
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the eigenvalue problem. We can no longer solve the problem directly 

as in the elastic case, but must employ a trial-and-error procedure. 

In this procedure, we replace Eq. (6.4) by, 

or 

(6.5a) 

(6.5b) 

(6.5~) 

where T; is introduced as a tracer and differs in meaning from A 

in Eq. (6.4~). The initial-stress stiffness matrix, 1 
F PI 

[ s J, and 
the modified bending stiffness matrix, 1 56 1, in this case are 

determined for an actual state of stress corresponding to a trial 

loading level. At this load level, the eigenvalue problem, 

Eq. (6.5b) or (6.5c), associated with these stresses, is solved and 

the lowest eigenvalue -h examined. If this eigenvalue is equal 

to one, the state of stress introduced is the critical one. That 

is, this state of stress causes the determinant of the stiffness 

matrix to be zero, det ([ < ] + [ s 1) = 0 . Thus, the eigen- 

value problem reduces to the determinant criterion discussed pre- 

viously. If A<l, the initial or prebuckling stresses exceed 

the critical stresses, and if 5; > 1, the initial stresses have 

not yet become critical. Thus, a succession of eigenvalue prob- 

lems is solved for various stress levels, in order to establish 

the critical buckling stress. 

An alternative procedure, valid for both elastic and plastic 

buckling calculations, makes use of the determinant criterion 

directly. With 5; set equal to one, we seek a stress level in 
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the prebuckling configuration which will satisfy Eq. (6.5a). The 

procedure is similar to that discussed previously for the eigen- 

value problem. A succession of stress states at various load 

levels is substituted into Eq; (6.5a). The determinant of 

(PiI + [%.I) is evaluated at each load level. The criti- 
cal 'state of stress is then identified-by a change in the sign of 

the determinant. In this procedure, care must be exercised to 

ensure that the detected crossover point corresponds to the funda- 

mental buckling mode. This requires a sufficiently close spacing 

of the load levels. 

The details of the computational procedures associated with 

the eigenvalue formulation are discussed in NASA CR- 66364. 

Discussion of the Stowell-Ilyushin Theory of Plastic Buckling 

In Ref. 45, Ilyushin presents a plastic buckling theory based 

on a deformation theory of plasticity. This formulation includes 

the possibility of elastic unloading, during buckling, in a por- 

tion of a cross section that is completely plastic in the prebuck- 

ling state. 

Stowell, in Ref. 46, simplifies the analysis of Ref. 45 on 

the basis of results for plastic column buckling. He assumes that, 

during buckling, 

4 there is no further change in the membrane stresses, 

W a completely plastic cross section remains com- 

pletely plastic; that is, there is no elastic 

unloading. 

These assumptions, along with the further restriction to a constant 

stress field in the prebuckling configuration, significantly re- 

duce the complexities of the analysis, since the possibility of an 
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elastic-plastic boundary in the cross section of the buckled con- 

figuration is excluded. 

Consistent with deformation theory, the analysis assumes that 

a unique relation exists between the effective stress and effec- 

tive strain. That is, 

e. 1 = O(L) = 2 
S 

where the effective stress and effective strain are defined as 

follows for plane stress, 

(6 -6) 

a. = 
1 J 0: + 2 

Y 
- cfxoy + 3T2 

XY 

and Es is the secant modulus. 

In the development of Eq. (6.6), the assumption is made that 
the material is incompressible, so that Poissonls ratio, V, is 

taken as one-half. The stress-strain relations which are consis- 

tent with Eq. (6.6) are 

E =lr 1 1 
X Esh - 2 OyJ 

EY 
11 1 

= i-lay - 5 Ox I 

Y =3’r,y 
XY ES 

(6.7) 
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Figure 25 shows a typical curve of effective stress versus effec- 

tive strain. Such curves are based on the uniaxial stress-strain 

characteristics determined experimentally. Also shown are the 
0. do. 

secant modulus, Es = $, and the tangent modulus, E 
i 

t =q* 

Throughout the analysis, the functional relation between ef- 

fective strain and effective stress is approximated by the Ramberg- 

Osgood stress-strain relation (Ref. 50). 

The relations of Eqs. (6.6) and (6.7) can be used along with 

.the usual assumptions of classical plate theory (Ref. 51) to de- 

velop the pertinent moment-curvature relations for a slightly out- 

of-plane deformed configuration. The resulting relations explicitly 

contain the effect of plastic yielding in the prebuckling configura- 

tion. 

The moment-curvature relations from Ref. 46 are, 

Mx 
2M 

x5 

where 

= - D' 

: 

5 c3 -2 c2 

:3 c5 -2 c4 

c2 c4 
:2 -z 

2;, 

(6.8) 

2 
hW 

x1 = 2 9 x2 
=&?I =A- 

ay2 ' x3 axay 

are the curvature and twist in terms of the transverse deflection , 
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dz 

defines the bending and twisting moments, h is the plate thick- 

ness,and 

D' 
Esh3 

=- 
9 

Cl = 1 -$(1 +) 
0. S 1 

c2 = 30$xY (1 - 2) 

i S 

c3 e ; 1 

[ 

- :zpl ->) 

i S 
I 

c3 = z3 + c3 

c4 = 3 a2 
wyl -3) 

i S 

Et -- 
ES 4 

(6.10) 

c5 = 1 -&l +) 
0. S 1 
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Equation (6.8) can be substituted into the following moment 

equilibrium equation for a plate with an inplane stress field 

(Ref. 51), 

-ha 
I 

&+o az,+2~xy& 
X ax2 Y ay2 I 

(6.11) 

to yield the following equation, specialized further to the case 

of a constant stress field in the prebuckling state, 

4 
aw- a4w 

'1 ax4 '2 a,38 + 2c3 
a4w a4w a4w s+c5-= 

Y ax2ay2 - c4 axay aY4 
(6.12: 

2 aw 2 2 
-+Cf aw aw 

X ax2 
- + 

Y ay2 
27 xy axay 1 

This equation is identical in form with the governing equation for 

elastic buckling of an anisotropic plate 2 (Ref. 52). The plate, 

therefore, deforms as if it were anisotropic, the anisotropy being 

due to plastic deformation and, consequently, a function of the 

state of stress in the prebuckling configuration. 

2 Equation (6.12) is in the form of the governing equation for an 

anisotropic elastic plate when the following substitutions are 

made, 

cl = Dll; c2 = - 4D16; c3 = (D12 + D66); c4 = - 4D26; c5 = D22 

where the D.. 
13 

describe the material properties of the plate 

as defined in Ref. 52. 
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In the elastic case, 

that Eq. (6.12) reduces to3 

Cl = C3 = C5 = 1 and C2 = C4 = 0, so 

04w 27 a2w 
xy axay 1 (6.13) 

In order to formulate the plastic buckling problem for a 

discrete-element analysis, it is necessary to find the functional 

from which Eq. (6.12) is derivable. Toward this end, the follow- 

ing expression for the strain energy of bending in terms of the 

moments and curvature is used, 

1 LIB = - 2 

s 
Mxxl + M x + 594 Y2 x XY 3 I &dY 

A 

Substituting the moment-curvature relation, Eq. (6.8), into 

Eq. (6.14), we obtain the functional, 

(6.14) 

D' UB = 2 
2 

CIXl - c2XlX3 + 2 c3XlX2 + ;3Xi f I 
2 - c4X2X3+ c5X2 dxdy (6.15) 

When the contribution from the membrane stress field (Ref. 51, 

p. 387) is added to Eq. (6.15), we obtain the functional, 

I- nd 21 c2XlX3 + 2[c3XlX2 + '3Xs] - '4X2X3 

'1 
2 aw 2 

+"yay ( > 
a~ aw +27 -- xy ax ay 

)1 
&dY 

(6.16) 

3 D in this case can be taken as the usual flexural rigidity. 
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It can be shown that the stationary problem associated with 

Eq. (6.16) yields the plate boundary value problem associated 

with Eq. (6.12).4 

Equation (6.16) is used in the subsequent analysis to de- 

velop the stiffness matrices for the discrete elements. Since 

all of the plate plastic buckling formulations based on deforma- 

tion and flow theory, Refs. 18, 43, 45-48, lead to a governing 

equation similar to Eq. (6.12), associated functionals similar to 

Eq. (6.16) can be found for these equations, differing from 

Eq. (6.16) only in the definition of the quantities cl through 

c5' 

Development of the Element Stiffness Matrices 

The techniques used in the development of the element stiff- 

ness matrices and the application of these matrices in a discrete- 

element elastic analysis have been discussed previously by a num- 

ber of authors. The derivation of the initial-stress stiffness 

matrix in the present work follows specifically from the analysis 

presented in Ref. 22. That is, the energy functional associated 

with the deformation of a discrete element is written in terms of 

the nodal generalized displacements. The element stiffness matrices 

are then derived from Castiglianols first theorem, 

4 This functional differs slightly from that given in Ref. 46. 
c- - 21 Th; term 2,C3xlx2 -I- Cx3j in Eq. (6.16) replaces the term 

'3Lxlx2 + x: I in Eq. (18) of Ref. 46. The stationary problem 

associated with the latter functional is found to yield the cor- 

rect differential equation, but does not yield the correct bound- 

ary condition. 
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k a2u 
ij = aha = j 

(6.17) 

where 

k ij is an element in the stiffness matrix 

Gi,Gj are generalized nodal displacements 

U is the energy functional associated with the 

element deformation 

Once devel;rped, the element stiffness matrices can be formed into 

the over-all stiffness matrix of the complete idealized structure 

by applying compatibility and equilibrium conditions at each node. 

In the buckling analysis of a planar elastic structure, the 

following energy functional, including the effect of membrane 

stresses (Ref. 51, p. 387), is used in Eq. (6.17)s 

u=: 
S[ 

(x1 + x2> 2 - 2u - 4 [x1x2 - xi 11 &dY 

A 

(6.18) 

+i u~(~)~+Is (4'+2~,,~~ dxdy 
X Y Y 1 

The first integral of Eq. (6.18), which represents the bending 

strain energy, and is a function of the material properties of 

the plate, leads to the usual bending stiffness matrix. The 

second integral, developable from geometric considerations, gives 

rise to the initial-stress stiffness matrix. As discussed pre- 

viously, the effect of plasticity can be included in the analysis 

by modifying the bending strain energy. The complete functional 
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containing the effect of plasticity is presented in Eq. (6.16). 

It may be introduced into Eq. (6.17) to yield the appropriate ele- 

ment stiffness matrix containing the effect of plasticity. 

Since attention is restricted in the present treatment of 

plastic buckling to flat rectangular panels, the idealizations con- 

sidered consist of initially flat rectangular discrete elements. 

Various types of displacement functions used to derive the stiff- 

ness matrices for a rectangular bending element are presented in 

the current literature. In Ref. 53, results obtained using three 

of these types of displacement functions are compared with exact 

results for various cases of laterally loaded rectangular plates. 

One of these, due to Papenfuss (Ref. 54), leads to compatible 

rotations and deflections along the element interfaces. However, 

due to the exclusion ofxa term representing uniform twist in the 

displacement function, calculations with this element lead to re- 

sults which do not converge to correct values. Another derivation 

of the stiffness matrix for this element, using interpolation 

formulas to arrive at the displacement function, as well as one 

involving a correction of the aforementioned deficiency, can be 

found in Ref. 55. The correction was effected by the inclusion 

of additional terms in the displacement function. The order of 

the resulting stiffness matrix is increased from 12 x 12 to 

16 x 16. Results shown in Ref. 55,using this modified element, 

indicate rapid convergence to the correct solution. Consequently, 

this element was chosen for use in most of the buckling calcula- 

tions in the present investigation. 

The initial-stress stiffness matrix based on the Papenfuss 

displacement function was derived in Ref. 23. This matrix is a 

subset of the corresponding initial-stress stiffness matrix de- 

rivable from the displacement function of Ref. 55. Therefore, 

all that was necessary to develop the initial-stress stiffness 
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matrix for the present analysis was to add the contributions of 

the additional terms of the displacement function of Ref. 55 to 

the matrix presented in‘Ref. 23. The resulting initial-stress 

stiffness matrix, as well as the modified bending stiffness matrix 

based on the displacement function of Ref. 55,are presented in 

Appendix I for a rectangular element. 
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7. DISCUSSION OF RESULTS FROM THE 

DISCRETE-ELEMENT BUCKLING ANALYSIS 

To verify the accuracy of the method of analysis presented in 

Section 6, a number of calculations were performed on the buckling 

of flat rectangular plates with various boundary,and loading con- 

ditions. Results of these calculations are first presented for 

the elastic buckling of uniformly loaded plates. Then, results of 

a series of plastic buckling calculations for simply-supported 

plates with various uniform edge loadings are presented and com- 

pared with exact results. Results are finally shown for plastic 

buckling in cases for which exact solutions are lacking. These 

are: a) a clamped square plate with a uniform load on two oppo- 

site edges, b) a simply-supported square plate with a triangular 

load distribution on two opposite edges, and c) a simply-supported 

plate with a uniform edge shear load. All results shown were de- 

termined using the eigenvalue formulation in the preceding section 

entitled Plastic Buckling. 

The elastic buckling calculations were performed for the case 

of a square plate with a uniform compressive load on two opposite 

edges, for both clamped and simply-supported edge conditions. In 

each case, the effect of a progressive refinement of the discrete- 

element idealization was investigated. Results for the elastic 

buckling coefficient, k, are shown in Tables la and lb for dif- 

ferent idealizations using the displacement functions of Papenfuss 

(Ref. 54),denoted by P, Melosh (Ref. 56), denoted by M, and Bogner, 

Fox, Schmit (Ref. 55), denoted by BFS. These results are compared 

with corresponding exact results for k. In Tables la and lb the 

size of the mesh in the idealization is indicated by n x n, where 

n denotes the number of element subdivisions along each edge of 

the plate. Except in the case of the 3 x 3 idealization, it was 
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possible to take advantage of the double symmetry of the buckling 

configuration and treat only one-quarter of the plate. 

Referring to the different displacement function representa- 

tions for the elements simply as "elements," we see that the re- 

sults corresponding to each element converge monotonically as the 

idealization is refined. In the case of the P and BFS ele- 

ments the results are seen to converge from above, and in the case 

of the M element they converge from below. The BFS and M 

element results converge to the exact value. The P element re- 

sults, however, appear to be converging to a value that is higher 

than the exact value in both the case of the clamped and that of 

the simply-supported edge condition. For example, in the case of 

the simply-supported plate, the error appears to be converging 

toward a value of about +5 percent. Similar observations have 

been made in connection with the analysis of transversely loaded 

rectangular plates using this element (Ref. 53). 

As indicated in the tables, the results using the M element 

converge rapidly from below. The error for the finest mesh size 

(12 x 12) for the simply-supported plate is -.76 percent and for 

the clamped plate it is -1.45 percent. The results of extensive 

elastic buckling calculations, using this element, for a wide 

range of edge support and loading conditions, can be found in 

Ref. 24. Excellent accuracy is indicated. 

The results based on the BFS element exhibit the most rapid 

convergence and best accuracy. In the case of the simply-supported 

plate, even the relatively coarse 3 x 3 and 4 x 4 idealizations 

produce errors that are only +.084 percent and +.026 percent, 

respectively. Within the limitations of computer accuracy, the 

results can be said to be exact for the 8 x 8 and the 12 x 12 

idealizations. The results for the clamped plate also show 
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excellent convergence, solutions for the 8 x 8 and 12 x 12 

idealizations showing errors of +.124 percent and +.058 percent, 

respectively, when compared with a series solution presented in 

Ref. 57. 

The fact that solutions provided by the M element converge 

from below and those provided by the BFS element converge from 

above, suggests the interesting possibility of establishing upper 

and lower bounds for the buckling loads of more complex panels. 

On the basis of the accuracy demonstrated in the elastic buckling 

problem, the BFS element was chosen for use in the subsequent 

plastic buckling calculations. 

In all of the plastic buckling calculations, the secant and 

tangent moduli are'found using the Ramberg-Osgood stress-strain 

relation Eq. (A-11) , which is written in terms of two character- 

istic material constants, *0.7 and n. The resulting expressions, 

formed as ratios to the elastic modulus, are 

Et 1 -= 
E n-l 

1+? 
0. 1 

( ) Oo.7 

= 1 
n-l cr. 

1+3 1 
( > 

7 a0.7 

(7 l 1) 

(7.2) 

Values of aom7 = 10 5 psi and n = 10 were used in all the cal- 

culations. A curve of effective stress versus effective strain, 

using these parametric values, is shown in Fig. 26. Since the 

Ramberg-Osgood relation does not identify a distinct yield point, 
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all the calculations contain some effect of plasticity. The first 

noticeable departure from linearity of the curve of Fig. 26 occurs 

at about ai = 70,000 psi. 

In order to determine the accuracy of the discrete-element 

analysis when applied to the plastic buckling problem, a series 

of computations were performed and the results compared with cor- 

responding exact solutions to the governing equations as presented 

by Stowell. The cases selected for comparison have simply-supported 

edge conditions and uniformly distributed loads normal to the bound- 

ary. 

The solution to the governing equation, Eq. (6.12), for the 

above boundary conditions and loading situations has the form, 

w(x,y) = wm sin 7 sin !z?LY 
b 

where a and b are the plate length and width respectively. 

Substituting Eq. (7.3) into Eq. (6.12) and canceling common tr 

nometric factors yields, 

cl(y)4 + 2c3(y)2 (y)2 + c,(y)” = - -fi ox (y)2 + (sy (y)2 
I 

Equation (7.4) can be recast in the form, 

h= a + Pn2(E)2) 
7r 

_ t 
E C m4 -I- 2C m2n2 a sl 3 (j--2 + C5n4(:j4 

1 

(7.3) 

go- 

(7.4) 

(7.5) 
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0 

where a* is a nominal stress intensity, a=-- x, B = -;, 
a* 

and Cl, C3, C53 Es are as defined in the section entitled Plastic 

Buckling. 

Equation (7.5) is used to generate input to the discrete- 

element program in the following way. For a given aspect ratio, 

a/b, a critical stress state and a buckling mode shape, m, n, 

are chosen and substituted into Eq. (7.5). This yields the thick- 

ness associated with the chosen buckled configuration and critical 

stress. The thickness calculated in this manner is used as input 

to the discrete-element buckling analysis. The resulting buckling 

stresses are then compared with the stresses used in the determina- 

tion of the plate thickness from Eq. (7.5). 

Using this procedure, critical stresses were found for simply- 

supported plates with a/b = 1 and a/b = 1.5, for three dif- 

ferent loading situations; 

a) a,=-~* , 
OY = 

0 

b) 0 =G =-CT* 
X Y 

c) ox=20 =-a* 
Y 

The idealization used in these calculations consisted of square 

elements in a 4 x 4 grid when a/b = 1, anda 6x4 gridwhen 

a/b = 1.5, as shown in Fig. 27. Synrnetry was taken into account, 

so that it was necessary to consider only one-quarter of the plate. 

Calculations were carried out for all three loading situa- 

tions, with the nominal stress, a*, given values in the range 

65,000 psi to 125,000 psi. The results are shown in Tables 2 

and 3. These results encompass a widely varying degree of plastic 
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deformation at the critical stress. The tables show the thick- 

ness, the corresponding exact value of the nominal stress and the 

stress computed from the discrete-element analysis. The vgrious 

loading situations are identified by the parameters, a=-<, 

B 2 
O* 

and y=- zxy . 
a* 

The results for the square plate, shown in Table 2, are based 

on a buckling mode shape consisting of a half-sine wave in each 

direction, and indicate agreement which is virtually exact. The 

maximum error is found to be +.031 percent. 

The results for the rectangular plate, shown in Table 3, are 

based on a buckling mode shape consisting of a full sine wave in 

the direction of the longer side and a half-sine wave in the direc- 

tion of the shorter side. Agreement is again seen to be excellent, 

the maximum error in this case being +.039 percent. 

We now consider the case of a clamped square plate loaded 

uniformly on two opposite edges. Taking into account once more 

the double symmetry of the buckling configuration, it is necessary 

to consider only one-quarter of the plate. The idealization that 

was used is shown in Fig. 28, and corresponds to the 12 x 12 grid 

discussed in connection with the elastic buckling results presented 

in Table 1. The error in the elastic case, using this idealization 

and the BFS element, was +.058 percent. The plate considered 

has the dimensions, a = b = 20 in. 

Calculations were made for various thicknesses, ranging from 

h = .5 in. to h = .8 in. This thickness range corresponds to a 

range of buckling stress from a value close to the elastic limit 

up to a value well into the plastic range. Table 4 shows both 

plastic and elastic buckling stresses corresponding to the various 

thicknesses. As the state of stress penetrates further into the 
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plastic range, the material stiffness decreases, so that the plas- 

tic buckling stress decreases relative to the corresponding elas- 

tic buckling stress. For h = .8 in., the maximum thickness con- 

sidered, this decrease amounts to 44.8 percent. This can be seen 

graphically in Fig. 29, which shows the plasticity reduction factor, 

q, defined as the ratio of0 the plastic buckling stress to the 

elastic buckling stress, P 
(5 ' plotted versus the plastic buckling 

stress. e 

The next case considered is that of a simply-supported square 

plate with a triangular distribution of load on two opposite edges. 

It was selected to demonstrate the applicability of the method to 

nonconstant stress field situations. As mentioned previously, the 

Stowell formulation of the plastic buckling problem involves the 

assumption of a uniform stress state throughout the plate. This 

does not preclude the use of this formulation in a discrete- 

element analysis of a plate which is not uniformly stressed. The 

stress can still be considered to be uniform within each element, 

but can vary from element to element. The stress distribution is 

thus approximated in the form of finite jumps over the planform of 

the plate. The state of plasticity, consistent with the Stowell 

formulation, is therefore constant within each discrete-element. 

By taking advantage of the single symmetry of the buckling mode, 

only one-half of the plate need be considered. The idealization 

of the half-plate consists of thirty-two square elements, as shown 

in Fig. 30. The idealized stress distribution is also shown in 

Fig. 30. 

To check the accuracy obtainable with such an idealization, 

an elastic case for a simply-supported square plate, a = b = 20 in., 

was analyzed. Based on a nominal stress of ax = 1 at y = 0, 

for the actual triangular load, the idealized nominal stress in- 

tensities vary from .9375 in elements located at 0 < y/b < .125 
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to .0625 in elements located at -875 5 y/b < 1, as shown in 

Fig. 30. The exact solution, taken from Ref. 58, can be written 

in the form, a* = k Er2t2 

12(1 - v2)b2 
,where c-f; is the stress inten- 

sity at y = 0, and k is the elastic buckling coefficient. For 

the case considered, Ref. 58 gives a value of 7.8 for k. The 

discrete-element analysis yielded the value, k = 7.8068, which 

represents an error of only +.087 percent. 

Plastic buckling calculations were carried out using the same 

idealization, for thicknesses ranging from h = .5 in. to 

h= 1 in. The results, in the form of the idealized critical 

stress distribution in the y direction, are presented in 

Table 5a. Each case represents a different degree of plastic de- 

formation. The case, h = .5 in., can be considered to be fully 

elastic. As a consequence of not defining a definite yield point, 

however, there is still a small reduction of the buckling stress 

due to the inclusion of a small plasticity effect. As seen in 

Fig. 26, a noticeable departure from linearity in the stress- 

strain relation occurs at about 70,000 psi. Therefore, based on 

this value as the yield stress, we can trace an elastic plastic 

boundary in the idealized structure. This boundary is indicated 

by a dashed line in Table 5a. As the thickness increases, the 

number of elements stressed beyond the yield point at the critical 

load also increases. When h = 1 in., half the plate is in the 

plastic range when the critical stress is reached. 

In Table 5b, the normalized buckling stress (the maximum 

value in the triangular distribution) is shown for the various 

thicknesses, compared with the corresponding elastic results. The 

plasticity reduction factor, q, is shown in Fig. 31, plotted 

versus the plastic buckling stress. 
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The effectiveness of the BFS element when applied to the 

buckling analysis of a plate loaded in pure shear is considered 

next. The case of a simply-supported square plate, with an 

idealization consisting of a 6 x 6 grid of square elements, as 

shown in Fig. 32, was studied. Calculations to determine the 

elastic buckling coefficient, using this idealization, yielded 

the value, k = 9.3458, as compared to a value of 9.34 given 

by a series solution (Ref. 58). 

The results of plastic buckling calculations are shown in 

Table 6. As before, the plastic buckling stress is compared with 

corresponding elastic buckling results for a range of thicknesses. 

The plasticity reduction factor, q, is shown plotted versus the 

plastic buckling stress in Fig. 33. 



8. THERMAL EFFECTS ON PLASTIC DEFORMATION 

No specific consideration has been given to thermal effects 

in the presentation and discussion of methods of structural analy- 

sis in the preceding sections. We now give brief consideration 

to this problem. 

In the case of elastic analysis, the treatment of thermal 

effects is routine. The elastic constants can be introduced as 

known functions of temperature, and thermal strains can be intro- 

duced as initial strains into Eqs. (3.1) and (3.5). The variation 

of the elastic constants with temperature requires that the influ- 

ence coefficient matrices be recomputed with each change in tempera- 

ture, unless the temperature distribution can be presumed to remain 

uniform, the structure is constructed of a single isotropic mate- 

rial, and Poisson's ratio does not change. The problem is essen- 

tially one of programming detail. 

In the case of plastic analysis, thermal strains can still be 

introduced as initial strains and simply added to the initial 

strains associated with plastic deformation. However, we now have, 

in addition, the vexing problem of temperature effects on the 

plastic behavior of the material. In treating this problem, it is 

advantageous to distinguish between two rather different situa- 

tions as follows: 1) The temperature can be assumed to remain 

constant during any individual cycle of load application, but vary 

from one cycle to another. 2) Simultaneous changes in temperature 

and load can occur within a given cycle of loading and must be 

taken into account. 

Experimental data applicable to either of these situations 

are largely lacking. The available experimental data on tempera- 

ture effects in plasticity appear to be limited to uniaxial tests 
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involving monotonic loading of virgin materials at various tempera- 

tures (Refs. 59-61). Such,data do not really provide information 

applicable even to the first situation mentioned above. Even data 

on cyclic loading into the plastic range at constant temperature, 

from tests performed at a variety of temperature levels, are lack- 

ing, as pointed out in Ref. 62. 

In view of the dearth of information on thermal effects on 

plastic behavior, consideration of the problem is limited here to 

a necessarily tentative and heuristic approach, making use of data 

obtained from elevated temperature tests on virgin materials. In 

the simpler case of constant temperature within individual loading 

cycles, we modify the parameters associated with plastic behavior 

in each loading cycle to correspond to the temperature in that 

cycle. 

When the stresses are uniaxial and we can assume linear strain- 

hardening, we simply introduce values of yield stress, oo, and 

hardening coefficient, c, appropriate to the temperature level 

in each cycle, disregarding the effect of prior yielding in pre- 

vious cycles. In the case of nonlinear strain-hardening, the 

Ramberg-Osgood approximation can be used to represent the stress- 

strain relation, and the parameters in this relation can be treated 

as functions of temperature. That is, we can write the inverse 

of the hardening coefficient as, 

3 ?> $4 I I 
n(T)-1 

7E (0 '0.7(T) 
63.1) 
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An experimental investigation (Ref. 35) has been performed to 

determine the variation of. the Ramberg-Osgood parameters with 

temperature for virgin materials at elevated temperatures. Stress- 

strain curves for tensile loading at various temperatures are pre- 

sented in Refs. 59 and 61. In addition, data on the variation of 

secant and tangent moduli with stress for various materials in com- 

pression at elevated temperatures are presented in Ref. 60. 

The variation of the yield stress, oo, with temperature, has 

been the subject of several experimental investigations (Refs. 59- 

61). The results indicate a decrease in the yield stress with in- 

creasing temperature. One relation between the yield stress and 

temperature is that suggested in Ref. 59, and written as follows, 

=A- T+B 
OO log h + C > (8.2) 

where A, B, and C are constants characterizing the material, 

T is the temperature at which the yield stress is to be deter- 

mined, and h is the temperature rate. 

The decrease of the yield stress with increasing temperature 

in the uniaxial case implies a decrease in the volume (or area) 

contained by the yield surface (or yield curve) in the multiaxial 

case. Thus, in the present case of constant temperature during 

any individual cycle of load application, with variation of tem- 

perature from one cycle to the next, the following modifications 

may be made to the solution techniques for each successive load 

cycle: 

1) Compute the thermal strains and add them to the 

inelastic strains. 

2) Determine the hardening coefficient on the same 

basis as in Appendix A, Eq. (A-13) or on such 

93 



other improved basis as may subsequently be 

developed to replace that of Appendix A. The 

parameters involved are given values appro- 

priate to the current temperature. 

3) Adjust the size of the yield surface on the 

basis of the value of the yield stress corre- 

sponding to the temperature in the current 

cycle. 

Consideration of simultaneous changes in load and temperature 

will clearly require a more complex modification of the existing 

solution procedures. We have seen that, in the case of isothermal 

plasticity, the yield function, f, is a function of 0.. and 
iJ 

cl ij' as indicated in Eq. (2.2). In treating nonisothermal plas- 

ticity, it will be assumed that there exists a function of the 

state variables, g(~ijJ aij, T), such that g < 0 for elastic 

states, and g = 0 for plastic states. This assumption was ini- 

tially employed by Prager (Ref. 63) to determine the nonisothermal 

constitutive plasticity relations. 

When a solid is in the plastic state (g = 0), infinitesimal 

changes in temperature and stress will lead to neighboring states, 

which can be elastic or plastic. Since 

I3 = g(‘ij, aijr T) 

we can write 

ag -vi?&- da dg = aa doij + acu, h3 

ij ij ij + z dT 

(8.3a) 

(8.3b) 

If dg < 0, the changes of temperature and stress constitute 

unloading from the plastic state; consequently da.. = 0, and 
iJ 
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-k da ag 
aa.. +sdT<O 

iJ 
ij 

If 

a do ag 
auij ij + 2% dT = O 

(8.4a) 

(8.4b) 

and the material is strain-hardening, there is no further plastic 

deformation, and the condition expressed by Eq. (8.4b) is neutral 

loading. The corresponding condition for the existence of neutral 

loading in the isothermal case is given in Eq. (2.6b). Equation 

(8.4b) also applies to perfectly plastic behavior. 

When 

* da ag 
au.. +aT dT > 0 

=J 
ij (8.4~) 

there will necessarily be plastic deformation, and Eq. (8.4~) 

indicates loading from one plastic state to another. Since g = 0 

and is not defined for values greater than zero, dg cannot be 

positive. It therefore follows that daij is nonzero in this 

case. 

If we assume that the effect of temperature is to change the 

size of the yield surface, without changing its shape or orienta- 

tion, the von Mises yield condition may be written as, 

2 
g(uij, aij, T) = (ux - ax) - (a, - ax) (ay - ay) + (a - ay) 

2 
Y 

(8.5) 

+3(a -a) 
2 

XY XY 
- o:(T) = 0 
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We thus find that, 

.ag -= - -k aa ij aa.. 
iJ 

Equation (8.3b) becomes 

ag ag dg = (da.. - daij) aa 
=J ij 

+sdT=O 

(8.6) 

(8.7) 

If, as before, we recognize that the vector cde ij' shown 

in Fig. 39, approximates the projection of da.. on the exterior 
=J 

normal to the loading surface at the instantaneous stress state, 

Eq. (8.7) becomes 

(doij ag ag - cde..) - 
1J aa.. 

+sdT=O 
=J 

The flow law can be written in terms of g, as follows, 

ds.. ag 
=J 

= dh aa 
ij 

and substitution of Eq. (8.9) into Eq. (8.8) results in the fol- 

lowing expression for dh, 

ag ag 
1 q daij + z dT dh = - 

(8.8) 

(8-g) 

where the hardening coefficient, c, is a function of the instan- 

taneous temperature level, as well as the previous history of 

temperature and stress. 
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If we now consider Ziegler's modification 

Eq. (2.10), and substitute this expression for 

W. (8.7)s we find that the expression for the 

factor, dv, becomes 

ag 
G daij +% aT dT 

dp = 
(ok1 

AL 
- aka) &oka 

to Prager's rule, 

da.. into 
1J 

proportionality 

(8.11) 

Application of the above relations to plastic analysis re- 

quires a knowledge of the effect of temperature on the initial 

yield stress, oo, and the hardening coefficient, c. As dis- 

cussed previously, while some data on initial yield exist, data 

on the hardening coefficient are lacking. Wch further effort in 

this area is required. 
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All of these procedures have been programmed for digital com- 

putation. Application has been made to three different sample 

structures, namely, a stiffened panel, a notched bar, and a simpli- 

fied swept wing structure. Results for cyclic loading in the case 

of the notched bar have been compared with available experimental 

data and found to show good agreement. 

The methods discussed above determine the stress and strain 

response of the structure to applied loading. Criteria for plas- 

tic collapse, to be used in conjunction with these methods, have 

been established, and partially tested in computations on the 

stiffened panel. 

The method developed for plastic buckling analysis applies a 

deformation theory of plasticity in conjunction with a discrete- 

element treatment based on the matrix displacement method. It 

has been developed in detail for application to rectangular plates 

with a wide variety of edge loadings and boundary conditions and 

has been programmed for digital computation. Computed results 

indicate good accuracy with a relatively coarse network of ele- 

ments. The method can be readily applied to cases that would be 

difficult to analyze on a continuum basis. Where necessary, the 

methods previously discussed can be used to determine the stresses 

in the unbuckled configuration, and the buckling analysis can then 

be used in testing for stability at various load levels. 

The digital computer programs implementing the methods de- 

veloped in the present study are presented in a separate report, 

NASA CR- 66364. 

Certain limitations in the methods as developed suggest direc- 

tions for future effort. In the case of the methods for the plas- 

tic analysis of unbuckled structures, these are itemized and dis- 

cussed as follows: 
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1. The methods, for the most part, involve the assumption of a 

uniform stress and strain field within the individual discrete 

elements in the idealization. It would be desirable to provide 

for a linear distribution of stress and strain in the elements. 

This would permit the use of a coarser idealization. 

2. There is, at present, a limitation to membrane stress in the 

discrete-elements. It would be desirable to provide also for 

bending in the elements. This would permit the analysis of plate 

bending and of shells in which bending of the wall, as well as 

membrane action, is important. 

3. The treatment of plasticity is straightforward when perfectly 

plastic behavior or linear strain-hardening can be assumed. In 

the case of nonlinear strain-hardening, however, the determination 

of the hardening coefficient in the incremental stress-strain re- 

lations requires further study. Much more experimental informa- 

tion will have to be generated before a satisfactory disposition 

of this problem can be made. In fact, a satisfactory experimental 

basis for the prediction of the general hardening behavior of 

structural metals is still largely lacking, particularly with re- 

spect to cyclic loading and intermittent loading of an arbitrary 

nature. 

4. The assumption of geometric linearity is unduly restrictive 

in some applications. The development of methods capable of taking 

simultaneous account of finite deflections and plastic deformation 

is desirable. 

5. In work performed elsewhere, it has been indicated that the 

use of flat elements in the analysis of curved shells can intro- 

duce substantial errors. Work is currently under way to develop 

appropriate curved elements for elastic analysis. This work 

should be extended to include plastic effects. 
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6. While work has already been done on discrete-element methods 

for plastic analysis with initial anisotropy, it does not treat 

the case of stress reversal into the plastic range. An extension 

of the methods of this report to include initial anisotropy would 

be particularly important in the treatment of composite materials. 

7. The criteria for plastic collapse presented here require 

further testing to establish their practicability. 

8. Experimental data on the plastic behavior of materials under 

varying temperature conditions are very limited.. A substantial 

effort in this area is needed. 

In the case of plastic buckling, further work is needed to 

develop the basic procedure of this report for application to a 

wider class of structures, particularly stiffened and unstiffened 

shells. A capability of treating buckling of the "top-of-the-knee" 

variety is desirable, particularly in view of indications that 

plastic buckling is especially sensitive to initial imperfections. 

Such a treatment could stem from methods discussed above for the 

combined finite-deflection and plastic analysis of structures. 
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APPENDIX A 

A Discussion of Some Pertinent Plasticity Theories 

In the following, some of the currently available plasticity 

theories, including the theory chosen for use in the present in- 

vestigation, are reviewed and examined for their applicability to 

the problem of cyclic loading into the plastic range. A better 

understanding of the various theories may be facilitated by re- 

viewing first some of the terminology and concepts employed in the 

theory of plasticity. 

In simple tension or compression, the elastic limit of a 

material is represented by a single value of stress or strain. How- 
ever, in the case of multiaxial stress, a single value or a finite 

number of values of stress or strain cannot be used to define the 

boundary of the elastic range. A functional representation, con- 

stituting a generalization of the yield point associated with uni- 

axial stress, is required. In this representation, some appropriate 

function of the stress components is equated to zero. In the case 

of initial yielding, the function is termed the yield function and . 

the equation constitutes the yield condition. In the case of sub- 

sequent yielding from a plastic state, the function is referred to 

either as the subsequent yield function or the loading function 

(Ref. 64), and the equation represents the subsequent yield condi- 

tion or loading condition. 

The yield and loading conditions can be given a geometrical 

interpretation. When plotted in stress space, that is, a space in 

which the coordinates are components of stress at a point, they 

determine surfaces in that space. These surfaces are referred to 

as yield surfaces and loading surfaces, respectively. In the most 

general case the stress space has nine dimensions, but may have 
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fewer dimensions if synuuetry of the stress tensor is taken into 

account or if certain of the stress components are always zero. 

When the material is elastic, perfectly plastic, the loading sur- 

faces are coincident with the yield surface. In the case of 

strain-hardening, the loading surface changes continuously as 

yielding proceeds, the variation depending upon the strain- 

hardening characteristics of the material. Analytically, it is 

evidenced by a dependence of the loading function on both the 

current state of stress and the history of stress. 

The yield condition (or yield surface) can be represented 

f(Gij) = 0 

where CT.. 
=J 

is the stress tensor, and f(oij) is the yield 

function, and the loading function (or loading surface) can be 

represented as 

f(a.., a..) = 0 
=J =J 

where a.. 
=3 

is a measure of the degree of work hardening. 

as 

(A-1) 

(2.2) 

The simplest form of the yield condition is the Tresca yield 

condition. This condition is based on the assumption that the 

material yields whenever the maximum shear stress reaches a criti- 

cal value. Mathematically, it can be represented as 

(A-2) 

where o and amin are the maximum and minimum principal 

stresses, and K is the uniaxial yield stress in tension. Geo- 

metrically, the Tresca yield condition is represented as a piece- 

wise linear surface. 
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Another simple and easily applied yield condition is the 

von Mises yield condition.. Mathematically, this condition implies 

that yielding occurs whenever the second invariant of the devia- 

toric stress tensor, J;, equals some critical value. Equivalent 

interpretations of this yield condition are: 

1) Yielding begins whenever the internal energy 

of distortion exceeds a certain value. 

2) Yielding begins whenever the shear stress on an 

octahedral plane exceeds a certain limit, the 

octahedral plane being referred to the principal 

stress directions. 

Geometrically, the von Mises yield function is represented as a 

smooth surface in stress space. 

In the present analysis, the von Mises function was chosen 

for use as the yield function. Although the functional representa- 

tion of a piecewise linear yield surface is simpler than the 

von Mises function, the choice of the smooth surface eliminates 

the necessity of considering singular regimes (corners), as in 

the case of the piecewise linear Tresca yield surface. 

Since we shall be concerned with cases of plane stress only, 

for which oz = "xz = 't 5 0, the von Mises yield condition can 

be represented by Eq. (;rl),which defines the yield surface as an 

ellipsoid in ox, (5 , and T 
Y XY 

stress space, 

f(Oij) = 0: - oxoy +0;+322 - uz=o 
XY (2.1) 

where u. is the yield stress in tension. 

The form of the loading function will be considered shortly. 
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On the basis of Drucker's postulate (Ref. 65), which states 

that the work done by an external agency during a complete cycle 

of loading and unloading must be nonnegative, the following two 

requirements must be satisfied: 

1) The yield and loading surfaces must be convex with 

respect to the origin in stress space. 

2) The plastic strain increment vector must lie on 

the outward normal to the loading surface at 

the instantaneous stress state. 

The ellipsoid given by Eq. (2.1) satisfies the convexity con- 

dition imposed upon the yield surface. The second requirement 

provides a means of obtaining a constitutive relation among the 

plastic strain increment and stresses and stress increment. This 

constitutive relation, termed the flow rule, is given in Eq. (2.7), 

and for completeness is rewritten here as follows, 

ds.. = dh 
af(o,., oi.) 

=J au.. 
=J 

(2.7) 

where dh is a positive scalar quantity. 

The flow rule leads to an incremental or flow theory of 

plasticity, in which there is path dependence of a final state of 

stress and strain as reached from some previous state. Flow 

theory is, in general, distinct from the deformation theory of‘ 

plasticity, in which the total plastic strains are related to the 

final stress state. According to this latter theory, a relation- 

ship between final states of stress and strain exists for any given 

loading process, unloading being specified by a separate law. In 

the case of proportional loading, in which the stress vector re- 

mains fixed in direction, flow'and deformation theories coincide. 
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Assuming Druckerls postulate to constitute a criterion for 

physical soundness, Budiansky (Ref. 66) has shown deformation 

theories to be consistent with this postulate only for loading 

paths in the vicinity of proportional loading. Since the problem 

under consideration is concerned with general loading paths, in- 

cluding reversed loading, the use of deformation theory was not 

considered to be appropriate. Thus, the flow theory of plasticity 

was chosen for use on the basis of its more general validity. 

Having selected a yield condition and a flow law, we must 

now consider the choice of a loading function to be used. The 

loading function will represent a convenient mathematical idealiza- 

tion of some macroscopically observed behavior. It should have 

the ability to describe quantitatively hardening behavior as de- 

termined from experimental results for a particular material. 

There have been several hardening rules proposed for use in 

the plastic analysis of structures. The choice of a specific 

hardening rule will depend upon the ease with which it can be 

applied in the method of analysis to be used, in addition to its 

capability of representing the actual hardening behavior of struc- 

tural metals. These requirements, together with the necessity of 

maintaining mathematical consistency with the yield function, con- 

stitute the criteria for the final choice of the hardening rule. 

An appraisal of the various hardening rules currently available 

is now presented. These are: 

Isotropic Hardening - This theory assumes that during plastic 

flow the loading surface expands uniformly about the origin in 

stress space, maintaining the same shape, center and orientation 

as the yield surface. Figure 34 illustrates, on the basis of a 

simplification to a two-dimensional plot, the yield and loading 

surfaces when the stress state shifts from point 1 to 2. Unload- 

ing and subsequent reloading in the reverse direction will result 
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in yielding at the stress state represented by point 3. The path 

2-3 will be elastic and O-2 is equal to O-3. 

It is seen that the isotropic type of representation of work 

hardening does not account for the Bauschinger effect exhibited by 

most structural materials. In fact, this theory provides that, 

due to work hardening, the material will exhibit an increase in 

the compressive yield stress equal to the increase in the tensile 

yield stress. Furthermore, since plastic deformation is an 

anisotropic process, it cannot be expected that a theory which 

predicts isotropy in the plastic range will lead to realistic re- 

sults when complex loading paths, involving changes in direction 

of the stress vector in stress space (not necessarily completely 

reversed), are considered. This conclusion has been indicated 

experimentally in Refs. 67-70. 

Thus, despite its mathematical simplicity, isotropic harden- 

ing was rejected for use in this analysis because of its inability 

to describe a realistic hardening behavior. 

Slip Theory - Utilizing the physical concept of slip surfaces 

in crystals, Batdorf and Budiansky (Ref. 71) have developed a 

theory which describes a loading surface that is distorted relative 

to the yield surface and previous loading surfaces. This theory 

predicts the formation of corners at the instantaneous stress state 

on the loading surface during plastic deformation. A representa- 

tion of the growth of the yield function in going from a stress 

state at the origin, 0, to the final state represented by 

point 3, is given in Fig. 35. In this figure, the unshaded region 

is that enclosed by the yield surface, and the various shaded re- 

gions indicate the stages in the formation of the loading surfaces 

in going from 0 to 3. 
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Since the stress state is almost always in a corner, the re- 

sulting constitutive relation between stresses and strains becomes 

quite complex. For this reason this theory was rejected for appli- 

cation in the present investigation. Although there are some ex- 

perimental results indicating the formation of corners and the 

distortion of the loading surface (Refs. 27, 68 and 69), these re- 

sults and those of Ref. 72 do not fully substantiate the behavior 

represented by slip theory. Furthermore, the Bauschinger effect 

is not taken into account. 

Piecewise Linear Plasticity - In this representation, the - 
yield surface consists of a finite number of plane surfaces, whose 

intersections constitute corners. The oldest and most widely used 

piecewise linear yield surface is that associated with the Tresca 

yield condition, represented in Eq. (A-2). The loading surface is 

assumed also to consist of plane surfaces, and the subsequent 

hardening behavior can be classified as 

(1) The hardening rule of independent plane loading surfaces: 

One of the earliest discussions of this representation of the hard- 

ening behavior is given in Ref. 73 and is illustrated in Fig. 36a. 

As seen from this figure,in which o1 and o2 are the only non- 

zero stress components, a loading path, O-2, in any quadrant of 

the stress plane does not affect the loading surface in the remain- 

ing quadrants. Thus, this hardening rule does not take the Bausch- 

inger effect into account. 

(2) The hardening rule of interdependent loading surfaces: 

This type of hardening rule, originally proposed by Hodge (Ref. 74), 

is a generalization of the hardening rule described in (1). By 

specifying a dependence between the planes that comprise the load- 

ing surface, a loading path intersecting any one plane of this sur- 

face may effect changes in each of the remaining planes. As illus- 

trated in Fig. 36b, this hardening rule can be used to specify any 
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piecewise linear loading surface, and is capable of taking the 

Bauschinger effect into account. 

A special case of the interdependent loading surfaces is 

considered in Ref. 75. It is assumed that plastic strain is due 

to slipping along three independent slip planes, along any one of 

which the shear is a maximum. Piecewise linear stress-strain rela- 

tions are written in terms of coefficients representing the harden- 

ing behavior of the material. These coefficients are functions of 

stress and are dependent upon a linear strain-hardening rule em- 

ployed in the analysis. By specifying the correspondence between 

various segments of the yield surface and the slip planes, total 

plastic strains for any loading are computed as the sum of the 

contributions from the three independent sets of slip planes. It 

is further assumed that the corresponding segments of the yield 

surface must maintain a constant elastic range from positive to 

negative yielding. An illustration of the subsequent loading sur- 

faces determined in this way is shown in Fig. 36~. It is seen 

from this figure that the Bauschinger effect can be taken into 

account. 

Of the hardening rules discussed thus far, the hardening rule 

of interdependent loading surfaces is the most general. However, 

its generality is limited to piecewise linear yield surfaces. 

Thus, the use of interdependent loading surfaces would not be 

mathematically consistent with the von Mises yield function, pre- 

viously discussed and chosen for use in the analysis. 

Kinematic Hardening - The hardening behavior postulated in 

this theory assumes that, during plastic deformation, the loading 

surface translates as a rigid body in stress space, mintaining 

the size, shape and orientation of the yield surface. The primary 

aim of this theory, due to Prager (Refs. 29 and 30), is to provide 
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a means of accounting for the Bauschinger effect. For piecewise 

linear yield surfaces, kinematic hardening may be considered to 

be a special case of the hardening rule of interdependent loading 

surfaces. However, it is not limited to piecewise linear yield 

surfaces. 

An illustration of kinematic hardening, as applied in conjunc- 

tion with the von Mises yield curve in the cl, a2 plane, is pro- 

vided in Fig. 37. The yield surface and loading surface are shown 

in this figure for a shift of the stress state from point 1 to 

point 2. Denoting the translation of the center of the yield sur- 

face by cx.., 
iJ 

the loading function, f, may be represented in 

the form f(o.. - a..) 
=J iJ 

and the subsequent yield condition is given 

by Eq. (2.8) and rewritten here as follows, 

f(Gij - CL.) = 0 
1J (2-W 

As a consequence of assuming a rigid translation of the load- 

ing surface, kinematic hardening predicts an ideal Bauschinger 

effect for completely reversed loading conditions. That is, the 

magnitude of the increase of yield stress in one direction will 

result in a decrease of yield stress of the same magnitude, in the 

reversed direction. Radashevitch and Novozhilov (Ref. 76) have con- 

currently developed a hardening rule identical to Prager's kinematic 

hardening rule. In their theory, the total translation of the 

yield surface is regarded as being associated with "internal micro- 

stresses" which remain in the body upon unloading. It is these 

internal microstresses which are considered to be responsible for 

the Bauschinger effect. 

Since the kinematic hardening theory does take into account 

the essential features of plastic deformation and, specifically, 

reversed plastic deformation, and since it is conceptually simple 

111 



and easily applied in an analytical procedure, it was chosen for 

use in the present investigation. Furthermore, experiments con- 

cerned with the determination of subsequent yield surfaces 

(Ref. 77) indicate approximate agreement with the translational 

behavior of the yield surface predicted by kinematic hardening. 

This hardening theory, as set forth by Prager, predicts that 

the increments of translation of the loading surface in 9-dimen- 

sional stress space occur in the direction of the exterior normal 

to the surface at the instantaneous stress state. However, as 

indicated in Refs. 78-80, inconsistencies arise when the theory is 

applied in various subspaces of stress, that is, when the symmetry 

of the stress tensor is taken into account or when there are zero 

stress components. 

Denoting zero stress components by o'.'. and nonzero com- 

ponents by oLj, the yield function, can be written as 

(A-3) 

where 
g(oL) 

is the yield function written in terms of the non- 

zero stress components. However, as indicated in Ref. 64,after 

some plastic deformation the loading function, Eq. (2.8), cannot 

be represented only in terms of the nonzero stress components when 

Pragerts hardening rule is used; that is, 

f(Uij - cLj) = f(Lj - a: a" ) # g(Lj - al) lj' ij 

11 

since 0.. = 
J-J 

0 does not imply oij = 0. Thus, Prager's rule is 

not invariant with respect to subspaces of stress. 
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A means of circumventing this difficulty is provided by the 

introduction of direct kinematic hardening. Zero stress components 

are deleted initially in the formation of the yield function and, 

therefore, do not appear in the loading function. Thus, the in- 

consistency indicated in Eq. (A-4) does not occur since the be- 

havior in g-dimensional stress space is never considered. How- 

ever, it has been indicated in Ref. 80 that, in consequence, 

direct kinematic hardening can only serve as an approximation to 

complete kinematic hardening, where all components of translation 

of the yield surface are considered. 

In both direct and complete kinematic hardening, the incre- 

ment of translation of the loading surface, denoted by da(P) . . in 

Fig. 38, is in the direction of the exterior normal to thei:oad- 

ing surface. This geometrical relation can be expressed analyti- 

cally by 

da.. = cds.. 
iJ 13 (A-5) 

where de.. 
iJ 

is the increment of plastic strain, which, accord- 

ing to the flow rule, Eq. (2.7), is in the direction of the ex- 

terior normal to the loading surface, and c is a parameter char- 

acterizing the hardening behavior of the material. 

The inconsistencies mentioned in connection with Pragerls rule 

produce the result that the loading surface will not, in general, 

translate in the direction of the exterior normal in a subspace 

of stress when it is made to do so in the full g-dimensional 

stress space. Reference 79 specifies stress conditions under which 

a linear transformation of variables enables the loading surface, 

in the transformed subspace, to translate in the direction of the 

exterior normal. It is also indicated in Ref. 79 that the applica- 

tion of Pragerls rule to the Tresca yield condition, in the case 

in which more than one normal stress is zero, results in a deformed 

yield locus. 
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In order to avoid the difficulties associated with the imple- 

mentation of complete kinematic hardening, Ziegler (Ref. 25) has 

proposed a modification of Pragerls rule. This modification re- 

places Eq. (A-5) with the expression for the increment of transla- 

tion given in Eq. (2.10) and rewritten here as follows, 

dol.. = dp(o.. - a..) 
=J iJ =J 

dp > 0 (2.10) 

The geometrical significance of this modification is shown 

in Fig. 38. In this figure, the increment of translation, da(P) 
ij ' 

computed on the basis of Prager's rule is compared with the incre- 

ment of translation, da(Z) ij ' computed on the basis of Ziegler's 

modified rule. Note that in the latter case the increment of 

translation, da(Z) ij ' is in the direction of the vector from the 

center of the yield or loading surface to the stress state. 

The scalar, dp, appearing in Eq. (2.10), is determined from 

the condition that the stress state must remain on the translated 

loading surface during plastic deformation. From Fig. 39 it is 

seen that this condition may be represented as 

(daij - dcij) e = 0 
ij 

Substituting Eq. (2.10) into Eq. (A-6), 

dp = 

e da.. 
i-j iJ 

af (a.. - cr..) - 
iJ 1J 30.. 

1-J 

(A-6) 

(A-7) 

An expression for the scalar factor, dh, associated with 

the flow rule, Eq. (2.7), can be determined by recognizing that 

the vector cdc ij' shown in Fig. 39, is approximately the projec- 

tion of do.. 
=J 

on the exterior normal to the loading surface at 
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the instantaneous stress state. Thus, for small increments of 

stress and strain, we can write 

(daij - cde..) 2-O 
IJ &Cl.. 

=J 

Using the flow rule, Eq. (2.7), to substitute for dc.. in 
rJ 

Eq. (A-81, results in the following expression for dh, 

The flow rule now becomes, 

dE.. = $ 
1J 

af au.. 
rJ 

@-8l 

(A-9) 

(2.11) 

The results in Eqs. (2.16) and (2.17) are equally applicable when 

Prager's rule or Ziegler's modification is used. 

The application of Ziegler's modification, Eq. (2.12), results 

in the following equality, 

f(Oij - oij) = f(oI. - al., o'.'. - cXLj) = g(ol - of.) 1J =J =J lj 1J 
(A-10) 

where o' ij # 0 and cij .= 0 implies cLj = 0. 

Thus, there is no inconsistency between the behavior in any 

subspace and in the full g-dimensional stress space, and the load- 

ing surface will translate without distortion in the former when it 

is presumed to do so in the latter. 
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The loading function for plane stress can now be written in 

terms of the nonzero stress components, and for the von Mises yield 

condition is given in Eq. (2.9), rewritten here as follows, 

f ('ij ,"ij) = (' 
2 

X 
- ",) - <a, - ",) (CT 

Y 
- ay) + (a 

2 - cr 
Y 2 

(2.9) 
+3(c -ax 

XY 2 
2 -+o 

Comparisons between Prager's rule and the modification of 

Ziegler, Ref. 25, indicate that, in general, the two rules do not 

coincide. However, as shown by Nagdhi (Ref. 64), the application 

of Prager's rule results in a translation of the loading surface, 

coincident with that predicted by Ziegler's modification, in the 

case of plane stress, with the following additional conditions: 

(1) The von Mises yield condition is used, 

(2) The hardening coefficient is constant. 

A multiaxial hardening coefficient - 

The implementation of any hardening rule requires a knowledge 

of the inelastic behavior of the material. In the case of kine- 

matic hardening, the parameter characterizing the inelastic be- 

havior of a given material is the quantity c in Eq. (A-9). In 

the general case of nonlinear strain hardening, c is a variable 

quantity. It can, in fact, be expected that, even for a given 

position of the loading surface, c will vary with the location 

of the stress state on the loading surface. 

The material properties generally used in inelastic analysis 

are obtained from simple tensile or compressive tests of samples 

of the material. If the structure to be analyzed is in a state 
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of uniaxial stress, the stress-strain relation is identical to that 

obtained from the tension or compression tests. The hardening 

coefficient c can then be taken simply as the slope of the 

stress versus plastic strain curve at the current stress level. 

This is illustrated in Fig. 40, where c 09 is the value of c 

corresponding to the stress c 04 at the kth step in the incre- 

mental procedures described in Section 3. 

If the state of stress is multiaxial, there exists no estab- 

lished procedure for the specification of c on the basis of uni- 

axial test data. This differs from isotropic hardening theory, in 

which the states of stress and strain are characterized by single 

scalar quantities referred to as effective stress and effective 

strain, respectively. The relationship between these two quanti- 

ties can be based on the uniaxial stress-strain relation for the 

material. In the present application of the kinematic hardening 

theory, a heuristic approach to this problem is proposed, based 

on an averaging procedure using data from simple tests. In this 

procedure we treat each stress component as though it alone were 

present, and determine a corresponding value for c, denoted 

C 
W 

on the basis of a uniaxial stress-strain curve, or a stress- 

strain curve for pure shear. These curves are based on the 

Ramberg-Osgood representation of the stress-strain relation 

(Ref. 5O), 

r I (n-1) 

where n is a shape parameter given by 

(A-11) 

n=l+ log(17/7) 

1og(a0.7’a0.85) 
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e is the total strain, E is the slope of the linear portion of 

the stress-strain curve, and aoe7 and ao,85 are the stresses 
at which the curve has secant moduli of 0.7E and 0.85E, respec- 
tively. 

We recognize the nonlinear term in Eq. (A-11) as the plastic 

strain and use it in determining the inverse of the hardening co- 

efficient evaluated at the kth load level, 

L& = (,,(p)jo) = $$1) 
. 

where c(p), the inelastic strain, is equal to 3a 
7E 

(A-12) 

_’ 

1 
(n-1) 0 

To.7 

The single value of c to be introduced into Eq. (A-9) for 

multiaxial stress is finally computed as a weighted average of 

the values of c.. 
=J 

determined for the various stress components. 

The expression for this quantity at the kth load level is 

-jg= 

where 1 3n -=- 
C ij 7E.. 

1-J 

k? 
cij =- 

ij (J 

/ 7 

(JW 
I 
(n-1) 

(G ( > O0.7 ij 

7 7 13 

(A-13) 

0 = 
P& + a;y + Gy) 
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It is seen that this empirical approach takes into account 

the fact that the hardening coefficient varies with the location 

of the stress point on the loading surface, and reduces to the 

correct value in the special case of a single nonzero stress com- 

ponent. In another special case, that of linear strain hardening, 

the value of the hardening coefficient is still determined by 

Eq. (A-13), except that the values of c;; are then constant. 

In the general 

stances, lead to an 

havior. At present 

J-J 

case, the approach may, under some circum- 

inaccurate representation of the hardening be- 

there is a lack of experimental data to de- 

scribe the general multiaxial hardening behavior of structural 

metals , particularly with respect to intermittent loading. Fur- 

ther study of this problem, including the generation of additional 

experimental data, is required to place the determination of the 

hardening coefficient on a sounder basis. 

A further generalization of Eq. (A-13) is necessary to ac- 

commodate reversed loading. This generalization can be carried 

out by first considering the uniaxial case. The displacement of 

the yield surface in multiaxial stress reduces to the displacement 

of the yield point in uniaxial stress, and is denoted as 01 in 

Fig. 41. If, as shown in Fig. 41, the assumption is made that the 

shape of the inelastic portion of the stress-strain curve upon 

reversed yielding is the same as that upon initial yielding, the 

value of the hardening coefficient becomes 

L@ = * [ Jy; aL ]-) (A-14) 

where o is the last computed value of (r. prior to unloading and 

reversed loading in the plastic range. 
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For multiaxial stress the procedure follows that previously 

outlined and indicated in Eq. (A-13), with p) replaced by 

( 
p> - ;;E 

ij > 

ij 

ij l 
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APPENDIX B 

Multiaxial Perfect Plasticity Criteria 

The uniaxial stress-strain characteristics of some materials 

can be represented in the plastic range by a strain-hardening 

portion, applicable below some finite value of strain, followed 

by a perfectly plastic portion in which the strain increases 

indefinitely without further increase in stress. This type of 

plastic behavior is termed limited strain hardening, and is illus- 

trated in Fig. 41. In the case of uniaxial stress, the onset of 

limited strain hardening can be specified by a limiting stress 

corresponding to a minimum value of the hardening coefficient, c. 

Correspondingly, in the case of multiaxial stress, the boundary of 

the strain-hardening region can be defined by specifying a minimm 

value of the hardening coefficient, cmin, as determined from 

Eq. (A-13). 

As an alternative approach, a bound on the displacement of 

the center of the loading surface can be specified to indicate the 

onset of perfect plasticity. For the case of uniaxial stress this 

displacement can be specified by some maximum displacement of the 

yield point, co, chosen to coincide with the point at which the 

hardening coefficient is cmin, as shown in Fig. 40. For multi- 

axial stress, a scalar function of the same form as the yield 

function, written in terms of a.. and ~1 instead of 0.. 
IJ 0’ 

and 
1J 

CT 
0’ 

can be used to represent the perfect plasticity criterion. 

This criterion, which we term the flow criterion, is written as 

h(oij) = oz - axay + a; + 3a2 - a2 = 0 
XY 0 (B-1) 
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The surface represented by Eq. (B-l) is concentric with the 

yield surface given by Eq. (2.1), and will be referred to as the 

flow surface. Thus, the onset of perfect plasticity will be 

assumed to occur whenever the center of the loading surface trans- 

lates to a position which lies on the flow surface. The initial 

yield and flow surfaces are illustrated in Fig. 42. It should be 

noted that this criterion will not, in general, be equivalent to 

the specification of cmin, except in the special case of uni- 

axial stress. 

For reversed plastic yielding, it is assumed that the flow 

surface is translated to a concentric position with respect to the 

loading surface, determined just prior to unloading. The loading 

surface and subsequent flow surface are shown in Fig. 42. Equa- 

tion (B-l) can now be generalized to accommodate reversed plastic 

flow by modifying it as follows: 

h(aij, zij) = (ox - -,' - (ox - +cy - "$ + (a 
- 2 

Y - ay> 

(B-2) 

+3((r 
XY 

-z )Lx~=o 
XY 

where (r. has the same significance as in Eq. (A-14). 

The shifting of the flow surface, for reversed plastic be- 

havior, is tantamount to assuming that the amount of hardening 

prior to perfectly plastic behavior is the same in the reversed 

direction as in the original direction. An illustration of this 

assumption for uniaxial stress is given in Fig. 41. 
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APPENDIX C 

Development of Some Matrix Relations Used in Section 3 

The submatrices of the diagonally partitioned matrix 
Ll 

E , 

initially appearing in Eq. (3.13), are comprised of the coefficients 

associated with Hooke's law. For a typical element subjected to a 

state of plane stress, Eq. (3.13)can be written as 

/ 

Aei 

Ae' 
Y 

A?' XY 

-1 -V 

-v 1 

0 0 

0 

0 

2(1 + V) 

AoX 

1, 1 A0 
Y 

AT 
XY 

(C-la) 

.\ 
This equation defines the matrix, -r &I E , in Eq. (3.13). The in- 

verse of the coefficient matrix, Ll E ,appears in Eq. (3.3), and 

a typical submatrix of PJ E -1 - can be written as 

I E 

t 

lv 0 

v 1 0 

0 0 l-v 
2 

( c-lb) 

The flow law, written in tensor notation in Eq. (2.7), can be 

expanded and expressed as follows for each component of plastic 

strain in a typical element: 

dex = 
Gx - &j )2dr-jx+(;x - $; )(;, - $Gx)do +(Gx - $: )(3S;xy)dTxy 

D (C-2a) 
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de = (OY - $a,) (0, - &;y)da,+ (Ty - $;x)2do,+ (Gy- ~;x)(3s;xy)d~xy _ __ 
Y D (C-2b) 

dr = 
(3'Fx,> Gx - +;y)dox+ (3-y)(:y- ~;x)d~y+(3~xy)2d~xy, 

XY D (c-2c) 

where 

cl = 
ij ('ij - aij) 

and 

D = f (5;; - 8Txiy + 5;; + 367:,) . 

If we put da.. = Aa.. and de.. = AC.., Eqs. (C-2) can be writ- 
13 =J =J 1-J 

ten in a matrix form that defines a submatrix of the diagonally 

partitioned matrix, a appearing in Eq. (3.11). 

(Ty - &x) ' G-3) 
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The incremental total strain-stress relation that appears in 

Eq. (3.14) contains the diagonally partitioned coefficient matrix, 

Ll 
R. Equation (3.15) indicates that a submatrix of PR ' 

1 &I can 
be obtained by summing the coefficient matrices of Eqs. (C-l) and 

W-3) to yield the following: 

[RI= 

3(T 
X - Gyl Gxy> 3Gy - Gx) Gxy> (3Ttxy>2 

L 
D D D 

+ 2(1+ .v) 

E - 

The tangency condition associated with perfect plasticity 

appears in Eq. (2.6b) in tensor notation. This condition can be 

expressed as follows: 

af (a - a0.. daij = x 
= 0 

=J 
$Ty)dox + (0 

Y 
- +;x)doy + 3(Txy)d-c 

XY 

K-4) 

k-5) 

where u.. 
=J 

is given in Eq. (C-2d). If we put daij = Aaij, and 

choose to express Aax in terms of Ao and AT 
Y XY’ 

then Eq. (C-5) 

can be represented in matrix form as follows 

0 (C-6) 

1 
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The coefficient matrix of Eq. (C-6) is a submatrix, 'ii Lo, 
1 1 

the diagonally partitioned matrix, , which first appears in 

Eq. (3.19). 

The normality condition associated with perfect plasticity is 

the flow law given in Eq. (2.7) and rewritten in Eq. (3.20). This 

condition can be expressed as follows: 

dcX 
ds 

dh = 
dyxy 

(TX - $;y) = (Tsy - &ix) = (3Yxy) 
(C-7) 

Setting dcij = Aaij in Eq. (C-7) leads to the incremental matrix 

relation that exists among the components of plastic strain incre- 

ment in a perfectly plastic 

bY, 

AG3) 
X 

AEC3) 
Y 

AyC3) 
XY 

= 

element. This matrix relation is given 

The coefficient matrix of Eq. (C-8) is a 

AG3) I X 

Ad3) 

: 

Y 

AY(3) 
XY 

Cc- 8) 

submatrix, [Z],of 

the diagonally partitioned matrix, 

Eq. (3.21). 

b - 
which first appears in 

126 



APPENDIX D 

Relations Between the Linear Influence Coefficient Matrices 

Associated with the Stress and Strain Methods 

As indicated in Section 3, the matrix equations associated 

with the stress method, Eq. (3.1), and the strain method, Eq. (3.5), 

are related. A relationship exists between the linear influence 

coefficient matrices, [B] and [A], and between [H] and [J]. 

In proceeding to establish these relationships, we rewrite 

Eqs. (3.1) and (3.5), 

co1 = [BlIPI + [Hlce) (3.1) 

(4 = [AICPI + [J]ce] (3.5) 

In the absence of any initial strains, Eqs. (3.1) and (3.5) 

become 

Cal = [BItPI (D-1) 

Cd = [AICPJ (D-2) 

The stresses are related to the strains through the gen- 

eralized Hookets law, 

where a submatrix of YE:-' is given in Eq. (C-lb). 

Premltiplication of both sides of Eq. P 1-l 
(D-2) by 1. EA 

yields 

Ll E -l{e} = ~/EA+[A](P] 

(D-3) 

(D-4a) 
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or 

Thus, from Eqs. (D-2) and (D-4b), we find 

[Bl = rE:-l[~] 

P-W 

(D-5a) 

or 

[A]= ' 
P Eq [B 1 . (D-5b) 

In the absence of any external load, Eqs. (3.1) and (3.5) 

become 

Cd = [HI{ ~1 (D-6) 

Cd = tJlb1 . CD- 7) 

The total strain (e} can be decomposed into elastic strain and 

initial strain: 

where {e') is the elastic component of strain. Equation (D-8) 

can be used to substitute for [e) in Eq. (D-7), resulting in the 

following equation, 

1 E,qCaJ + Cd = [J](E) l (D-9) 

Substituting Eq. (D-6) into Eq. (D-9), we obtain 

(p&HI + rI\l)cEl = [JIc~) (D-10) 

where PI 1 
1 J 

is the unit matrix. This provides the following 

relationship between the linear influence coefficient matrices, 

[HI and [Jl , 
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or 

[HI = PA-l ([J] - rIJ) 

(II-lla) 

(D-lib) 



APPENDIX E 

A Procedure to Compute the Load Level Necessary to Cause 

Yielding from an Elastic State 

In the present investigation, because of the assumption of 

small deflections and the assumption that unloading from a plastic 

state can be treated as a purely elastic process (hysteretic ef- 

fects are neglected), the elastic response during initial loading 

and unloading from a plastic state is a linear function of the . 
applied loads. Therefore, it is necessary to implement the in- 

cremental procedures only when yielding has occurred in at least 

one element of the idealized structure. The procedure outlined 

below was used to determine the loads at which this occurs. 

Considering proportional loading only, we can denote one of 
* 

the loads by P and let each of the other loads be some given 
3; 

multiple of P . Thus, 

CP) = P*(F) (E-1) 

where (F] is the vector of loads, normalized with respect to 
* 

P. In addition, we can define 

1% = [Blt’i;) (E-2) 

where [B] is defined in Eq. (3.1). 

For the general case of unloading and reversed loading from 

some plastic state, the residual stresses, as given in Appendix G, 

can be written as 

bR> = cHlb:> from the stress method ; (G-1) 

or 

(a,) = r$'-' ([J] - pIJ)k] from the strain method . (G-7) 
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The stresses at any level of loading can be computed from the fol- 

lowing equation, 

bl = P"{B] + (o,) . (E-3) 

In the j th element of the idealized structure, the three 

components of stress can be written as follows using an indicial 

notation, 

u 
X = a(3j-2) = "(3j-2) ' oR(3j-2) 

OY = '(Sj-1) = '*'(3j-1) + oR(3j-1) (E-4) 

7 

XY = '(3j) = p*E(3j) + oR(3j) ' 

Substituting these values of stress into the von Mises yield func- 

tion results in the following expression, 

1 
2 

( '*'(3j-2) +oR(3j-2) > 
- 

- a(3j-2) 

- [( P*B(3j-2) +oR(3j-2) > - -o(3j-2) I[ ( P*B(3j-l) + oR(3j-1) - o(3j-1) (E-5) > - 1 
(p*B(3j-1) +oR > 

- 

(3j -1) 
- o(3j-1) (p*B(3j)+%(3j) > 

For an arbitrary value of P*, we can determine the element 

at which the value of the function given in Eq. (E-5) has the 

largest magnitude. Designating this element as the kth element, 

we can write the von Mises yield condition as a quadratic equa- 
* 

tion in P ; 
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(P*)2 + Cl(P*) + c2 = 0 (E-6) 

where 

(3k-2) - oR(3k-2) 2B(3k-2) >( - -ii (3k-1) > 

+ hk-1) - aRc3k-lj >( - 2B(3k-l) 
-ii (3k-2) )I 

W-2) - oR(3k-2) 

+ (- a(3k-l) ) 2 
*R (3k-1) 

+ 3(a(3k) > 
2 

oR 
(3k) 

(E-7) 

and 

c3 = ii2 (3k-2) - '(3k-2) 
B (3k-1) + $3k-1) + 3';3k) I 

For initial loading in the absence of any initial strains, 

Eq. (E-6) reduces to the form, 

* a =- 
p CT 

0 

where 

- 
cl = 

( z2 
3 

(3k-2) - '(3k-2$$3k-l) + $3k-1) + 3';3k) ' (E-8) 

In all other situations, Eq. (E-6) must be solved. Since two 

solutions are obtained, it is necessary to establish which of them 

is applicable. In the case of initial loading with initial strains 
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present, the two solutions will be opposite in sign, and the posi- 

tive solution is the correct one, unless the initial strains are 

sufficient in themselves to cause yielding. In the case of un- 
loading from a plastic state and subsequent reversed loading, one 

solution will correspond to the load at which unloading starts, so 

that the other solution is the applicable one. 
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APPENDIX F 

A Yield Condition for the Notched Bar 

As indicated in Section 4, the material of the notched bar is 

an aluminum alloy that exhibits anisotropic plastic behavior. The 

anisotropy is evidenced by differing yield points and a differing 

hardening behavior in tension and compression. The differing yield 

points present some difficulties in connection with the use of the 

von Mises yield condition, which assumes initial isotropy. Thus, 

it is desirable to establish a yield condition that will provide 

for the initial anisotropy, and will reduce to the von Mises yield 

condition in the limiting case of initial isotropy. 

It is conjectured that the initial anisotropic plastic behavior 

results from some plastic deformation that has occurred in the manu- 

facturing process. Within the framework of the kinematic hardening 

theory, this would imply that the initial yield surface experiences 

a translation. We will assume 

the plane of the normal stress 

stress space. If we represent 

that this translation occurs only in 

components (the x-y plane) in 

the initial translation as p.., the 
=J 

von Mises yield condition becomes 

(“X 
- Px12 - (0, - B,) by - ByI + by - Py12 - az = 0 (F-1) 

2 where o is to be defined. 
0 

It is further assumed that there is initial plastic isotropy 

with respect to tension only or compression only. That is, the 
T yield stresses in tension, (aij) , are the same in the x and y 

directions, GT = (JT = oT 
X Y 

, and the yield stresses in compression 

are the same in the x and y directions, GC = c = oc 
X OY l 

As a 

consequence of this assumption, the initial translations, p, and 

BY, 
will be equal, or B, = @ 

Y 
= @. 
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Since the yield condition must pass through the points, (oz, 0) 

and (a ', 0) (or (0, c?) and (0, CT:)), we can write from 

Eq. (G-:), 

(T. - @)2 - (0: - f3) (0 - f3) + (0 - PI2 - 02 = 0 (F-2) 

and 

(0: - @)2 - (0: - @)(O - B) + (0 - PI2 - 0: = 0 l (F-3) 

From Eqs. (F-2) and (F-3), we find the initial translation to 

be 

B = oT + 2 (F-4) 

and 

o2 = P2 - oToC . 
0 

(F-5) 

For complete initial isotropy, oT = - oc , and, from 

Eqs. (F&4) and (F-5), we find 

B 0 = (F-6) 

(5 
0 

= (oT)2 (F-7) 

indicating that Eq. (F-l) will reduce to the von Mises yield condi- 

tion for initially isotropic materials. 
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APPENDIX G 

Residual Stresses and Strains 

As previously mentioned in Section 4, reliable predictions of 

residual stresses or strains resulting from cyclic loading in the 

plastic range are important in establishing estimates of fatigue 

life and the ultimate strength of aircraft structures. Either of 

the two methods presented in Section 3 can be used to determine the 

residual stresses or strains at any stage of loading. 

The stress method: 

The matrix equation for stresses is given in Eq. (3.1), and is 

rewritten here, 

Cd = [BltP} + [HIhI . (3.1) 

In the absence of any external loads, the residual stresses are 

given by 

The residual strains will be the sum of the permanent plastic 

strains and the strains due to the residual stresses. 

(.G-2) 

where the matrix 
lE ?I 

is defined in Eq. (C-la) of Appendix C. 

Substituting for (a,} from Eq. (G-l), we can write the 

residual strains in terms of the inelastic strains, as follows, 

(G-3) 
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where the lnatrix of influence coefficients multiplying the initial 

strains is recognized to be the matrix, [J], defined in Eq. (D-lla) 

of Appendix D. 

The strain method. - 

The matrix equation for strains is given in Eq. (3.5), and is 

rewritten here, 

Eel = klCP3 + [Jlcs} (3.5) 

In the absence of any external loads, the residual strains 

are given by 

CeR) = [J](c) (G-4) 

The residual stresses can be computed from the elastic com- 

ponent of the residual strain, 

tei3 = Ee,J - (~3 l (G-5) 

Therefore, 

(G-6) 

Ll -1 
where the matrix E is defined in Eq. (C-l) of Appendix C. 

The residual stresses can be written in terms of the inelastic 

strains by substituting for (e,] from Eq. (C-4) into Eq. (G-6), 

(C-7) 

where the matrix of influence coefficients multiplying the initial 

strains is recognized to be the matrix, [HI, defined in Eq. (D-llb) 

of Appendix D. 
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The residual stresses and strains, as computed by means of 

the above procedures, are valid at the end of any cycle of loading 

only if the zero load state is reached without the occurrence of 

reversed yielding. Where this is not the case, incremental plas- 

ticity calculations must be performed from the point of initiation 

of reversed yielding, as determined by the procedure outlined in 

Appendix E, until the zero load state is reached. At this point 

the above relations for residual stresses'and strains can again be 

used. 
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APPENDIX H 

Plastic Collapse of Continuous Media With 

Limited Strain-Hardening Properties 

Reference 41 presents theorems applicable to the plastic col- 

lapse of continuous media with elastic, perfectly plastic proper- 

ties. In particular, it establishes that, if all changes in geome- 

try occurring during collapse are neglected, all stresses remain 

constant during collapse. We now proceed to extend the applicabil- 

ity of this theorem to a medium with limited strain-hardening 

properties in the plastic range. 

Using the notation of Ref. 41, we rewrite some relations that 

are establ.ished in Ref. 41 and are equally applicable to our _ 

present case. These relations involve strain rate rather than 

strain itself. 

The total strain rate, E.. 
=J 

, can be decomposed into an elastic 

part, se. , and a plastic part EP l 

=J ij' 

(H-1) 

On the basis of the generalized form of Hooke's law, it can 

be shown that, 

e 1 
E ij~ij > O 

e except when E.. = 0:. = 0 , 
=J iJ (B- 2) 

where o' ij is the stress rate, and the summation convention on 

repeated indices applies. 

In perfectly plastic regions of the medium, the following 

relation follows from normality of the strain rate vector and 

tangency of the stress rate vector to the loading surface, 

cr’ EP =o ij ij (H-3) 
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From the definition of plastic collapse, the following condi- 

tions are found to apply during collapse, 

J T;%; dS = 0 and F ‘C 

i = 0 for some v'i # 0 (H-4) 

where v. 1 are velocities, T. 1 are surface tractions, F. are 1 
body forces, primes indicate rates of change, superscript c refers 

to collapse, and the integration is carried out over the surface of 

the body. 

Application of the principle of virtual work to the velocity 

field and the rates of change of the surface tractions, body forces, 

stresses and strains during collapse yields the following, 

(H-5) 

where the first integration is carried out over-the surface of the 

body and the last two integrations are carried out through the 

volume of the body. 

In the present case, we need an additional relation applicable 

in regions where the medium is experiencing strain hardening. On 

the basis that the stress increment vector and the plastic strain 

increment vector must both be directed outward from the yield sur- 

face, we can write for such regions, 

CT’ ij”pij > O J except when EP co' 
ij ij 

=(-j . 

Returning now to Eq. (H-5), we see that the left-hand side 

must vanish in consideration of Eq. (H-4). Thus, decomposing the 

strain rate on the right-hand side of Eq. (H-5) into elastic and 

plastic parts, we have 
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(5 lCceC dv + ij ij o'C~PC dv = 0 ij ij . 0-P 7) 

According to Eq. (H-3), the second integral in Eq. (H-7) must 

vanish in the perfectly plastic regions. Since, according to 

Eqs. (H-2) and (H-6), the first integral, in the entire body, and 

the second integral, in the strain-hardening regions, cannot be 

negative, it follows that Eq. (H-5) can be satisfied only if the 

stress rate, ‘C 0 
PC 

ij' vanishes throughout the body and the strain 

rate, E.., 
rJ 

vanishes in the strain-hardening portions of the body. 
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APPENDIX I 

Rectangular Finite.Element Stiffness Matrices 

The element stiffness matrix is derived by using the following 

displacement function given in Ref. 55, 

2 

W(X,Y) =. f CL 
Hi:)([)Hzi)(g)wij + Hl:)([)Hii)(q)a wIxij 

i=l j=l 

(1-l) 

where 

Hi:)(v) = 2v3 - 3v2 + 1 

Hi;)(v) = - 2v3 + 3v2 

Hi:) (v) = V3 - 2V2 + V 

Hi;) (v) = v3 - v2 

and the quantities w. lj ' aw ,xij' bw .., abw 
>YlJ ,xYij 

are nodal gen- 

eralized displacements, arranged according to the convention shown 

in Fig. 43. 

The modified bending stiffness matrix can be written in terms 

of component parts multiplied by the coefficients, Cl, c2J 

c4' and c5' 
The resulting matrix is in the form, 

142 



[<] = $[z (:)2LKc11 + C2 3Kc21 + &~C3”LKml 

C 
+ & ~3h[Kc31 + C4 3Kc41 + 2 (;) 

2 
[Kc51 . 

I 

(I-2) 

The quantities, A and 6, multiplying the matrices, [KB] and 

[Kc31 , respectively, are used as tracers. When the modified bend- 

ing stiffness matrix is desired for a plastic buckling calculation, 

h and 6 are taken as equal to one. For an elastic buckling cal- 

culation, h and 6 are taken as 2(1 - V) and 2u., respectively, 

and the coefficients become Cl = c5 = 1, c2 = c4 = 0, and 
c3 = 2, = $. 

The initial stress stiffness matrix can be written in terms of 

component parts due to ax, (T , and T 
Y XY' 

as follows, 

(1-3) 

Only the elements in the first four columns of the component 

parts of the stiffness matrices need be computed, since values for 

these elements reappear in the remaining columns according to the 

pattern shown in Figs. 43 and 44. 

z3, C5J 

The matrices multiplied by Cl, c3, 

and ox, o 
Y 

follow the pattern shown in Fig. 43a. The 

matrices multiplied by C2, C4, and T 
XY 

follow the pattern shown 

in Fig. 43b. Numerical values for the first four columns of these 

matrix component parts are given in Figs. 44 and 45. 
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Table la 

Elastic Buckling Coefficient for Simply-Supported 

Square Plate, Uniformly Loaded on Two Opposite Sides 
1 Y =- 
3 

k 
N$ 

= - 
r2D , 

kexact = 4. 1 _I- 
2x2 4x4 8x8 3x3 6x6 12 x 12 

P (Ref. 71) 6.8630 402638 4.2119 4.3147 4.2255 4.2020 

M (Ref. 73) 3.2863 3.7577 3.9336 3.6052 3.8849 3.9697 
BFS (Ref. 72) 4001575 4.00104 4.00009 4.00332 4.00022 4.000099 

Table lb 

Elastic Buckling Coefficient for Clamped Square 

Plate, Uniformly Loaded on Two Opposite Sides 
1 Y =- 
3 

N b2 
k=-1(1,k 

K2D exact = 10.07 

. 

2x2 4x4 8x8 3x3 6x6 12 x .- 12 :--. 1 
P (Ref, 71) 10.7242 10.6344 10.4053 10.9081 10.4771 10.3500 
M (Ref. 73) 9.7445 9.2147 9.7616 9.1259 9.5717 9.9244 
BFS (Ref. 72)‘ 10.7242 10.1916 10.0824 lo,4912 10.0993 10.0758 
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Table 2 

Plastic Buckling of a Simply-Supported Square Plate with 
Various Normal Edge Loadings. Idealization of Fig. 

a = 20 in. b = 20 in. E = lo7 psi v = l/2 uo,= low5 psi 
. 

a =l.O p = 0. y = 0. 

35a. 

n = 10 

a.) 

b-1 

c.1 

Thickness a* 
h (in.> Exact 

.77867 - 65000 - 65002 

.85800 - 75000 - 75003 

.96449 - 85000 - 85003 
1.12019 - 95000 - 95002 
1.36678 -105000 -105002 
1.76752 -115000 -115000 
2.39053 -125000 -125002 

u* 
Discrete-Element 

Analysis 

a = 1.0 B = 1.0 y = 0. 

Thickness 
h (in.) 

u* 
Exact 

1.12500 - 65000 
1.29980 - 75000 
1.60231 - 85000 
2.08258 - 95000 
2.77755 -105000 
3.78569 -115000 
5.26002 -125000 

u* 
Discrete-Element 

Analysis 

- 65018 
- 75014 
- 85009 
- 95008 
-105007 
-115007 
-125007 

a = 1.0 p = .5 y = 0. 

Thickness u* 
h (in.1 Exact 

** 
Discrete-Element 

Analysis 

~ .94979 - 65000 
1.03884 - 75000 
1.15727 - 85000 
1.33364 - 95000 
1.58816 -105000 
1.93707 -115000 
2.42382 -125000 

- 65020 
- 75016 
- 85015 
- 95010 
-105008 
-115007 
-125007 
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. 
Table 3 

Plastic Buckling of a Simply-Supported Rectangular Plate with 

Various Normal Edge Loadings. ,Idealization of Fig. 35b. 

a = 30 in. b = 20 in. E = lo7 psi Y = l/2 co7= 105 psi n = 10 

a.1 

W 

C-1 

a = 1.0 f3 = 0. Y = 0. 

Thickness 
h (in.) 

.75088 - 65000 

.83518 - 75000 

.95429 - 85000 
1.12710 - 95000 
1.39064 -105000 
1.80884 -115000 
2.45321 -125000 

u* 
Exact 

O* 
Discrete-Element 

Analysis 

- 65005 
- 75004 
- 85004 
- 95002 
-105001 
-115001 
-125001 

a = 1.0 p = 1.0 y = 0. 

Thickness 
h (in.> 

.95460 - 65000 
1.10292 - 75000 
1.35960 - 85000 
1.76713 - 95000 
2.35683 -105000 
3.21226 -115000 
4.46327 -125000 

u* 
Exact 

u* 
Discrete-Element 

Analysis 

- 65025 
- 75016 
- 85011 
- 95010 
-105009 
-115009 
-125009 

a = 1.0 /3 = .5 y = 0. 

Thickness 
h (in.> 

u* 
Exact 

Is 2: 
Discrete-Element 

Analysis 

.84370 - 65000 - 65022 

.92558 - 75000 - 75018 
1.03918 - 85000 - 85015 
1.21632 - 95000 - 95009 
1.48109 -105000 -105008 
1.84729 -115000 -115007 
2.35015 -125000 -125007 
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Table 4 

Plastic Buckling of a Clamped Square Plate 
with a Uniform Load on Two Opposite Edges 

a - 20 in. b - 20 in. v = .5 E = lo7 psi 

uo.7 = lo5 psi n = 10 

Thickness 
h (in.1 

Plastic Buckling 
Stress(psi) 

Elastic Buckling 
Stress (psi) 

05 -66414. - 69018. 
.6 -81712. - 99385. 
.7 -91234. -135277. 
.8 -97549 D -176687. 
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Table 5 

Plastic Buckling of a Simply-Supported Square Plate 

with a Triangular Load on Two Opposite Edges 
a= b= 20 in. v = .5 E = lo7 psi 

uo7= lo5 psi n = 10 . 

a.1 Plastic Buckling Stress Distribution in the y Direction 

Y/b .5 

0 to .125 -50140. 

.125 to .25 -43496 n 

025 to .375 -36770. 

0375 to .50 -30084. 

.50 to .625 -23398. 

.625 to .75 -16714. 

.75 to .875 -10028. 

0875 to 1. - 3342. 

Thickness h (in.) 

.6 I .7 I .8 I 1. 

-71856. ----- 
-62275. 

-52695, 
-43113. 

-33531. 

-23952. 

-14372. 

- 4790. 

-93895. 

-81377. --- 
-68857. 

-56338. 

-43819. 

-31299. 

-18778. 

-62600. 

-110553. 

- 95813. 
- 81070. 

- 66331. 
- 51591. 

- 36851. 

- 22110. 

- 7370. 

-130077. 

-112734. 

- 95390, 
- 78046. 

- 60702. 

- 43359. 
- 26015. 

- 8671, 

b.) Normalized Plastic Buckling Stress at y = 0 

I Thickness Plastic Buckling 
h (in.) Stress (psi) 

.5 - 53483. - 54166. 

.6 - 76646. - 78000. 

.7 -100155. -106166. 

.8 -117923. -138667. 

1.0 -138749. -216667. 

Elastic Buckling 
StGess (psi) 
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Table 6 

Plastic Buckling of a Simply-Supported Square Plate 

Due to a Uniform Shear Load 

a=20in. b=20in. v=.5 E=107psi 

O0.7 = lo5 psi n = 10 

.4 .4 

.5 .5 

.6 .6 

.7 .7 

Plastic Buckling Plastic Buckling Elastic Buckling Elastic Buckling 
Stress (psi) Stress (psi) 

-39414. -39414. - 40969. - 40969. 
-50313. -50313. - 64015. - 64015. 

-56604. -56604. - 92182. - 92182. 

-60792 o -60792 o -125470. -125470. 
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Fig. 21 , DISCRETE-ELEMENT IDEALIZATION OF SWEPT MULTICELL BOX BEAM. 
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Fig.23 SWEPT BOX BEAM CYCLIC LOAD vs. STRESS AT ROOT OF TRA 
EDGE OF SWEPT PORTION 

ILING 

STRESS METHOD - STEPWISE LINEARIZATION PROCEDURE ( AP=SO lb.1 
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Fig. 25 TYPICAL EFFECTIVE STRESS- STRAIN CURVE. 
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Fig. 27b IDEALIZATION USED FOR THE CASES SHOWN IN TABLE 3. 
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Fig. 28 IDEALIZATION FOR A CLAMPED SQUARE PLATE 

W’ITH A UNIFORM COMPRESSIVE LOAD ON TWO 
OPPOSITE EDGES. 
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Fig. 30 IDEALIZATION FOR SIMPLY-SUPPORTED SQUARE PLATE 

WITH A TRIANGULAR COMPRESSIVE EDGE LOAD. 
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